这题直接换根dp 记录在要转移的点的子树中有多少牛

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define C getchar()-48
inline ll read()
{
ll s=0,r=1;
char c=C;
for(;c<0||c>9;c=C) if(c==-3) r=-1;
for(;c>=0&&c<=9;c=C) s=(s<<3)+(s<<1)+c;
return s*r;
}
const ll N=1e5+10,inf=1e18;
ll n,ans,mn=inf,zg;
ll c[N];
ll sz[N];
ll link[N],e[N<<1],nxt[N<<1],v[N<<1],top;
inline void llo(ll xx,ll yy,ll vv)
{
e[++top]=yy,nxt[top]=link[xx],link[xx]=top,v[top]=vv;
}
inline void dfs(ll x,ll fa,ll deep)
{
sz[x]=c[x];ans+=c[x]*deep;
for(ll i=link[x];i;i=nxt[i])
{
ll u=e[i];
if(u==fa) continue;
dfs(u,x,deep+v[i]);
sz[x]+=sz[u];
}
}
inline void dfs2(ll x,ll fa,ll ans)
{
mn=min(mn,ans);
for(ll i=link[x];i;i=nxt[i])
{
ll u=e[i];
if(u==fa) continue;
dfs2(u,x,(ans+(zg-sz[u])*v[i]-(sz[u])*v[i]));
}
}
int main()
{
freopen("gather.in","r",stdin);
freopen("gather.out","w",stdout);
n=read();
for(ll i=1;i<=n;i++) c[i]=read(),zg+=c[i];
for(ll i=1;i<n;i++)
{
ll x=read(),y=read(),v=read();
llo(x,y,v);llo(y,x,v);
}
dfs(1,0,0);
dfs2(1,0,ans);
cout<<mn;
return 0;
}

【简】题解 AWSL090429 【聚会】的更多相关文章

  1. 【简】题解 AWSL090429 【市场】

    因为这有个时间的限制 并且  求的时间都是前缀和 那么 我们可以根据时间将排序 因为题中没有修改可以直接用背包预处理出答案 但是因为题目ci mi<=1e9   vi<=300 所以发现不 ...

  2. 【简】题解 AWSL090429 【噪音】

    因为每次加上一头奶牛 是什么不重要 牛棚之间贡献除清空操作外无影响 就只要考虑 每个牛棚清空分x次 的贡献 x之和为k       求贡献和最小 一个牛棚清空x次 显然平均清空贡献最小 再用等差数列的 ...

  3. 【简】题解 AWSL090429 【数塔问题】

    因为每次只ban一个点 而且不是永久性的 预处理出每个点从上往下和从下往上的最大值 每次询问直接暴力 被ban掉点那行去掉那点的最大值 也可以直接预处理出每行的最大值和次大值 还有种做法貌似可以过 预 ...

  4. 【简】题解 AWSL090429 【原子】

    预处理出每个原子最近的不能合并的位置 枚举当前位置和前面断开的位置合并 发现还是不能过 考虑用选段树优化 但是因为每次转移的最优点是在前面可以合并的范围内 dp值加上当前的到该点的最大值 因为每个位置 ...

  5. 【简】题解 AWSL090429 【价值】

    先考虑当要选的物品一定时 显然有个贪心 wi越小的要越先选 所以先按wi从小到大拍序 因为发现正着递推要记录的状态很多 并且wi的贡献与后面选了几个物品有关 考虑正难则反 倒着递推 提前计算wi的贡献 ...

  6. DP笔记

    这是一篇蒟蒻被大佬踩爆后写的笔记 套路 0.贪心(废话)(排序...) 1.dp预处理出要用的东西 2.两头同时dp 3.化简题目中本质相同的东西 转化模型 4.数学计算优化 5.分析题目数据考虑该从 ...

  7. 【题解】Luogu P5361 [SDOI2019]热闹又尴尬的聚会

    原题传送门 构造题. 明显p,q都越大越好 我们考虑每次取出度最小的点,加到尴尬聚会的集合中(因为把与它相邻的点全删了,不珂能出现认识的情况),把它自己和与自己相连的点从图上删掉(边也删掉),记下这个 ...

  8. 题解 BZOJ 1037 & Luogu P2592 [ZJOI2008]生日聚会

    BZOJ & Luogu 老师说是背包?并没看出来QAQ 设f[i][j][o][p]表示已经选了i个人,j个男生,男生比女生最多多o个,女生比男生最多多p个时的方案数 两种转移: <= ...

  9. 题解 [BZOJ1832][AHOI2008] 聚会

    题面 解析 首先对于其中的两个点\(x,y\)最近的点显然就是他们的\(lca\)(我们把它设为\(p1\)), 然后考虑第三个点\(z\)与\(p1\)的\(lca,p2\). 有以下几种情况: \ ...

随机推荐

  1. [hdu5629]Clarke and tree

    首先由一个神奇的序列叫做Purfer序列,他可以表示一棵树,且每个节点出现此时为度数-1(因此总长为n-2). 然后dp,用f[i][j][k]表示用前i个点中的j个点构成了一个长度为k的Purfer ...

  2. [bzoj1735]泥泞的牧场

    考虑木板一定都尽量长,对于每一个污泥,最多只有两种木板会覆盖它(横着和竖的),将这两块木板连边,意味着每一条边两端端点中一定有一个点要被选,即最小点覆盖=最大匹配数. 1 #include<bi ...

  3. *(volatile unsigned int *)的理解

    1. 解释 前面是无符号整型unsigned int的指针, 后面加一个地址,就是无符号整型的地址,前面又一个星号就是这个地址的值. 2.volatile 同步 因为同一个东西可能在不同的存储介质中有 ...

  4. Apache Kafka分布式流处理平台及大厂面试宝典v3.0.0

    概述 **本人博客网站 **IT小神 www.itxiaoshen.com 定义 Apache Kafka官网地址 http://kafka.apache.org/ 最新版本为 3.0.0 Apach ...

  5. Apache ZooKeeper原理剖析及分布式理论名企高频面试v3.7.0

    概述 **本人博客网站 **IT小神 www.itxiaoshen.com 定义 Apache ZooKeeper官网 https://zookeeper.apache.org/ 最新版本3.7.0 ...

  6. IDEA安装JavaFx

    jdk11之后jdk就不内置javafx了,需要自己下载 在idea中新建JavaFx项目: 创建成功后发现代码标红 这个时候要把刚刚下载的JavaFx包解压后添加进去 ​ 选择到自己解压的路径的文件 ...

  7. IPv6 寻址方式简介

     在计算机网络中,寻址模式是指在网络上托管地址的机制.IPv6 提供了多种类型的模式,可以通过这些模式对单个主机进行寻址.也可以同时对多个主机进行寻址或者寻址最近距离的主机. 单播寻址 在单播寻址方式 ...

  8. Codeforces 739D - Recover a functional graph(二分图匹配)

    Codeforces 题面传送门 & 洛谷题面传送门 首先假设我们已经填好了所有问号处的值怎样判断是否存在一个合法的构造方案,显然对于一种方案能够构造出合法的基环内向森林当且仅当: \(\fo ...

  9. Unique Path AGC 038 D

    Unique Path AGC 038 D 考虑如果两个点之间只能有一个边它们就把它们缩起来,那么最后缩起来的每一块都只能是一棵树. 如果两个点之间必须不止一个边,并且在一个连通块,显然无解. 首先把 ...

  10. window10快捷键 + 浏览器常用通用快捷键

    一.window10快捷键  1.win+tab   缩小版的显示出桌面打开的所有窗口,然后再结合上下左右键加enter选择想要的窗口:  如果不想选择或者保留原有显示窗口,再按win+tab  或者 ...