运用你所掌握的数据结构,设计和实现一个  LRU (最近最少使用) 缓存机制。它应该支持以下操作: 获取数据 get 和 写入数据 put 。

获取数据 get(key) - 如果关键字 (key) 存在于缓存中,则获取关键字的值(总是正数),否则返回 -1。
写入数据 put(key, value) - 如果关键字已经存在,则变更其数据值;如果关键字不存在,则插入该组「关键字/值」。当缓存容量达到上限时,它应该在写入新数据之前删除最久未使用的数据值,从而为新的数据值留出空间。

进阶:

你是否可以在 O(1) 时间复杂度内完成这两种操作?

示例:

LRUCache cache = new LRUCache( 2 /* 缓存容量 */ );

cache.put(1, 1);
cache.put(2, 2);
cache.get(1); // 返回 1
cache.put(3, 3); // 该操作会使得关键字 2 作废
cache.get(2); // 返回 -1 (未找到)
cache.put(4, 4); // 该操作会使得关键字 1 作废
cache.get(1); // 返回 -1 (未找到)
cache.get(3); // 返回 3
cache.get(4); // 返回 4

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/lru-cache

class LRUCache {

//LRU 缓存机制可以通过哈希表辅以双向链表实现,我们用一个哈希表和一个双向链表维护所有在缓存中的键值对。
private static class Node{
private int key; private int value; private Node prev; //前置结点 private Node next; //下一个节点 public Node(){} public Node(int key,int value){
this.key = key;
this.value = value;
} } //当容量满的时候,采用LRU淘汰策略
//1.淘汰最少使用的数据
//2.淘汰最早放进来的数据 private Map<Integer,Node> map = new HashMap<Integer,Node>(); //标识容量 是一个固定值
private int capacity; //标识大小,当前大小
private int size; //头结点
private Node head; //尾节点
private Node tail; public LRUCache(int capacity) {
this.capacity = capacity;
this.size = 0;
// 使用伪头部和伪尾部节点
head = new Node();
tail = new Node();
head.next = tail;
tail.prev = head;
} //如果 key 不存在,则返回 -1−1;
//如果 key 存在,则 key 对应的节点是最近被使用的节点。通过哈希表定位到该节点在双向链表中的位置,并将其移动到双向链表的头部,最后返回该节点的值
public int get(int key) {
Node result = map.get(key);
if(result == null){
return -1;
}
//通过哈希表定位到该节点在双向链表中的位置,并将其移动到双向链表的头部
result.prev.next = result.next;
result.next.prev = result.prev;
//把当前节点放到头结点
result.prev = head;
result.next = head.next;
head.next.prev = result;
head.next = result;
return result.value;
} /**
对于 put 操作,首先判断 key 是否存在:
如果 key 不存在,使用 key 和 value 创建一个新的节点,在双向链表的头部添加该节点,并将 key 和该节点添加进哈希表中。然后判断双向链表的节点数是否超出容量,如果超出容量,则删除双向链表的尾部节点,并删除哈希表中对应的项;
如果 key 存在,则与 get 操作类似,先通过哈希表定位,再将对应的节点的值更新为 value,并将该节点移到双向链表的头部。
**/
public void put(int key, int value) {
Node result = map.get(key);
//若是没有则放入新的node节点
if(result == null){
Node node = new Node(key,value);
//添加到hash表
map.put(key,node);
//把新加入的节点放到链表的头部
node.prev = head;
node.next = head.next;
head.next.prev = node;
head.next = node;
++size;
//如果当前大小已经超出了容量,就把最久未使用的删除
if(size > capacity){
//去除hash表中的值
map.remove(tail.prev.key);
//去除链表中最久未使用的节点
tail.prev.prev.next = tail;
tail.prev = tail.prev.prev;
--size;
}
} else {
//若是有值,需要把原来的值覆盖
result.value = value;
map.put(key,result); //把链表中的节点放到头结点
//先把当前节点删除
result.prev.next = result.next;
result.next.prev = result.prev; //把当前节点放到头结点
result.prev = head;
result.next = head.next;
head.next.prev = result;
head.next = result;
}
}
} /**
* Your LRUCache object will be instantiated and called as such:
* LRUCache obj = new LRUCache(capacity);
* int param_1 = obj.get(key);
* obj.put(key,value);
*/

【力扣】146. LRU缓存机制的更多相关文章

  1. 力扣 - 146. LRU缓存机制

    目录 题目 思路 代码 复杂度分析 题目 146. LRU缓存机制 思路 利用双链表和HashMap来解题 看到链表题目,我们可以使用头尾结点可以更好进行链表操作和边界判断等 还需要使用size变量来 ...

  2. 【golang必备算法】 Letecode 146. LRU 缓存机制

    力扣链接:146. LRU 缓存机制 思路:哈希表 + 双向链表 为什么必须要用双向链表? 因为我们需要删除操作.删除一个节点不光要得到该节点本身的指针,也需要操作其前驱节点的指针,而双向链表才能支持 ...

  3. Java实现 LeetCode 146 LRU缓存机制

    146. LRU缓存机制 运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制.它应该支持以下操作: 获取数据 get 和 写入数据 put . 获取数据 get(key) - ...

  4. 146. LRU 缓存机制 + 哈希表 + 自定义双向链表

    146. LRU 缓存机制 LeetCode-146 题目描述 题解分析 java代码 package com.walegarrett.interview; /** * @Author WaleGar ...

  5. [Leetcode]146.LRU缓存机制

    Leetcode难题,题目为: 运用你所掌握的数据结构,设计和实现一个  LRU (最近最少使用) 缓存机制.它应该支持以下操作: 获取数据 get 和 写入数据 put . 获取数据 get(key ...

  6. 146. LRU缓存机制

    题目描述 运用你所掌握的数据结构,设计和实现一个LRU (最近最少使用) 缓存机制.它应该支持以下操作: 获取数据 get 和 写入数据 put . 获取数据 get(key) - 如果密钥 (key ...

  7. leetcode:146. LRU缓存机制

    题目描述: 运用你所掌握的数据结构,设计和实现一个  LRU (最近最少使用) 缓存机制.它应该支持以下操作: 获取数据 get 和 写入数据 put . 获取数据 get(key) - 如果密钥 ( ...

  8. LeetCode 146. LRU缓存机制(LRU Cache)

    题目描述 运用你所掌握的数据结构,设计和实现一个  LRU (最近最少使用) 缓存机制.它应该支持以下操作: 获取数据 get 和 写入数据 put . 获取数据 get(key) - 如果密钥 (k ...

  9. Leetcode 146. LRU 缓存机制

    前言 缓存是一种提高数据读取性能的技术,在计算机中cpu和主内存之间读取数据存在差异,CPU和主内存之间有CPU缓存,而且在内存和硬盘有内存缓存.当主存容量远大于CPU缓存,或磁盘容量远大于主存时,哪 ...

随机推荐

  1. sqlalchemy insert on duplicate update

    sqlalchemy insert on duplicate update from sqlalchemy.dialects.mysql import insert insert_stmt = ins ...

  2. Part 28 AngularJS default route

    At the moment the problem is that, if you try to navigate to a route that is not configured, you wil ...

  3. OAuth 2.0 扩展协议之 PKCE

    前言 阅读本文前需要了解 OAuth 2.0 授权协议的相关内容, 可以参考我的上一篇文章 OAuth 2.0 的探险之旅. PKCE 全称是 Proof Key for Code Exchange, ...

  4. 『学了就忘』Linux软件包管理 — 45、yum源文件详细说明

    目录 1.yum源文件解析 2.查看yum源文件 3.搭建本地光盘yum源 第一步: 第二步: 第三步: 提示:RPM包的在线安装就是yum安装,yum安装需要依据yum源文件内容配置来寻找软件.本文 ...

  5. Nginx server_name翻译

    http://nginx.org/en/docs/http/server_names.html#regex_names 匹配优先顺序 精确名称,无通配符,无正则. 以星号开头的最长的通配符名称,例如& ...

  6. [bzoj3038]上帝造题的7分钟2

    考虑每一个位置最多开6次左右就会变成1,然后操作就没有意义了,因此对线段树维护区间和和一个标记,表示是否全部都是1,然后对于修改,如果区间标记不是1就暴力下去,是1就不用操作,复杂度为$o(6nlog ...

  7. [luogu6860]象棋与马

    根据扩欧$(a,b)=1$必须要满足,同时,若$a+b$为偶数则格子的"奇偶性"不变,因此$a+b$必须为奇数 反过来,容易证明满足$(a,b)=1$且$a+b$为奇数则一定可行( ...

  8. Python学习手册——第二部分 类型和运算(1)之字符串

    Python全景 1.程序由模块构成. 2.模块包含语句. 3.语句包含表达式. 4.表达式建立并处理对象. 在python中数据是以对象的形式出现的!!! 为什么使用内置类型 内置对象使程序更容易编 ...

  9. jpa生成uuid

    使用jpa可以生成uuid,但是我直接添加数据没有id值会报错,只在程序中有效,如果直接修改数据库需要手动填写,另外长度不要乱填 ,之前填了200,找了半天才找到原因. package com.jav ...

  10. 基于Docker搭建Maven私服Nexus,Nexus详解

    备注:首先在linux环境安装Java环境和Docker,私服需要的服务器性能和硬盘存储要高一点,内存不足可能到时启动失败,这里以4核8GLinux服务器做演示 一:基于Docker安装nexus3 ...