P4219 [BJOI2014]大融合

题目描述

小强要在\(N\)个孤立的星球上建立起一套通信系统。这套通信系统就是连接\(N\)个点的一个树。 这个树的边是一条一条添加上去的。在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它的简单路径的数量。

现在,你的任务就是随着边的添加,动态的回答小强对于某些边的负载的 询问。

输入输出格式

输入格式:

第一行包含两个整数 \(N, Q\),表示星球的数量和操作的数量。星球从 \(1\) 开始编号。

接下来的 \(Q\) 行,每行是如下两种格式之一:

  • A x y 表示在 \(x\) 和 \(y\) 之间连一条边。保证之前 \(x\) 和 \(y\) 是不联通的。
  • Q x y表示询问 \((x,y)\) 这条边上的负载。保证 \(x\) 和 \(y\) 之间有一条边。

输出格式:

对每个查询操作,输出被查询的边的负载。

说明

对于所有数据,\(1≤N,Q≤10^5\)


LCT维护子树信息,涨见识了。

\(sizx_i\)代表虚边连的儿子的大小。

然后\(updata\)这样写

void updata(int now){siz[now]=siz[ls]+siz[rs]+sizx[now]+1;}

然后是在\(access\)的时候修改一下虚边儿子大小,在\(link\)的时候要把两个树都选上去保证没得父亲,因为我们不想把被连的那个点的信息再向上更新。

维护最值可以在每个点开个平衡树


Code:

#include <cstdio>
#define ll long long
#define ls ch[now][0]
#define rs ch[now][1]
#define fa par[now]
const int N=1e5+10;
int ch[N][2],par[N],siz[N],sizx[N],tag[N],s[N],tot,tmp;
bool isroot(int now){return ch[fa][0]==now||ch[fa][1]==now;}
int identity(int now){return ch[fa][1]==now;}
void updata(int now){siz[now]=siz[ls]+siz[rs]+sizx[now]+1;}
void Reverse(int now){tag[now]^=1,tmp=ls,ls=rs,rs=tmp;}
void connect(int f,int now,int typ){ch[fa=f][typ]=now;}
void pushdown(int now)
{
if(tag[now])
{
if(ls) Reverse(ls);
if(rs) Reverse(rs);
tag[now]^=1;
}
}
void Rotate(int now)
{
int p=fa,typ=identity(now);
connect(p,ch[now][typ^1],typ);
if(isroot(p)) connect(par[p],now,identity(p));
else fa=par[p];
connect(now,p,typ^1);
updata(p),updata(now);
}
void splay(int now)
{
while(isroot(now)) s[++tot]=now,now=fa;
s[++tot]=now;
while(tot) pushdown(s[tot--]);
now=s[1];
for(;isroot(now);Rotate(now))
if(isroot(fa))
Rotate(identity(now)^identity(fa)?now:fa);
}
void access(int now)
{
for(int las=0;now;las=now,now=fa)
splay(now),sizx[now]+=siz[rs]-siz[las],rs=las;
}
void evert(int now){access(now),splay(now),Reverse(now);}
void link(int u,int v){evert(u),access(v),splay(v),par[u]=v,sizx[v]+=siz[u],updata(v);}
void cat(int u,int v){evert(u),access(v),splay(v),ch[v][0]=par[u]=0,updata(v);}
int query(int now){access(now),splay(now);return siz[now];}
int n,q;
int main()
{
scanf("%d%d",&n,&q);
for(int i=1;i<=n;i++) siz[i]=1;
char op[3];
for(int u,v,i=1;i<=q;i++)
{
scanf("%s%d%d",op,&u,&v);
if(op[0]=='Q') cat(u,v),printf("%lld\n",1ll*query(u)*query(v)),link(u,v);
else link(u,v);
}
return 0;
}

2018.12.7

洛谷 P4219 [BJOI2014]大融合 解题报告的更多相关文章

  1. 洛谷P4219 - [BJOI2014]大融合

    Portal Description 初始有\(n(n\leq10^5)\)个孤立的点,进行\(Q(Q\leq10^5)\)次操作: 连接边\((u,v)\),保证\(u,v\)不连通. 询问有多少条 ...

  2. 洛谷P4219 [BJOI2014]大融合(LCT,Splay)

    LCT维护子树信息的思路总结与其它问题详见我的LCT总结 思路分析 动态连边,LCT题目跑不了了.然而这题又有点奇特的地方. 我们分析一下,查询操作就是要让我们求出砍断这条边后,x和y各自子树大小的乘 ...

  3. 洛谷P4219 [BJOI2014]大融合(LCT)

    LCT维护子树信息的思路总结与其它问题详见我的LCT总结 思路分析 动态连边,LCT题目跑不了了.然而这题又有点奇特的地方. 我们分析一下,查询操作就是要让我们求出砍断这条边后,x和y各自子树大小的乘 ...

  4. 洛谷 P4219 [BJOI2014]大融合

    查询,就相当于先删去这条边,然后查询边的两个端点所在连通块大小,乘起来得到答案,然后再把边加回去 可以用线段树分治做 #pragma GCC optimize("Ofast") # ...

  5. 洛谷4219 BJOI2014大融合(LCT维护子树信息)

    QWQ 这个题目是LCT维护子树信息的经典应用 根据题目信息来看,对于一个这条边的两个端点各自的\(size\)乘起来,不过这个应该算呢? 我们可以考虑在LCT上多维护一个\(xv[i]\)表示\(i ...

  6. P4219 [BJOI2014]大融合(LCT)

    P4219 [BJOI2014]大融合 对于每个询问$(u,v)$所求的是 ($u$的虚边子树大小+1)*($v$的虚边子树大小+1) 于是我们再开个$si[i]$数组表示$i$的虚边子树大小,维护一 ...

  7. 洛谷_Cx的故事_解题报告_第四题70

    1.并查集求最小生成树 Code: #include <stdio.h> #include <stdlib.h>   struct node {     long x,y,c; ...

  8. 洛谷 P2317 [HNOI2005]星际贸易 解题报告

    P2317 [HNOI2005]星际贸易 题目描述 输入输出格式 输入格式: 输出格式: 如果可以找到这样的方案,那么输出文件output.txt中包含两个整数X和Y.X表示贸易额,Y表示净利润并且两 ...

  9. 洛谷 P2606 [ZJOI2010]排列计数 解题报告

    P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...

随机推荐

  1. vue2.0做移动端开发用到的相关插件和经验总结

    最近一直在做移动端微信公众号项目的开发,也是我首次用vue来开发移动端项目,前期积累的移动端开发经验较少.经过这个项目的锻炼,加深了对vue相关知识点的理解和运用,同时,在项目中所涉及到的微信api( ...

  2. openstack-r版(rocky)搭建基于centos7.4 的openstack swift对象存储服务 四

    openstack-r版(rocky)搭建基于centos7.4 的openstack swift对象存储服务 一 openstack-r版(rocky)搭建基于centos7.4 的openstac ...

  3. JAVA学习笔记--初识容器类库

    一.前言 JAVA中一切皆为对象,因而,持有对象显得尤为重要. 在JAVA中,我们可以通过创建一个对象的引用的方式来持有对象: HoldingObject holding; 也可以创建一个对象数组来持 ...

  4. Python 函数内省

    函数内省(function introspection) 除了__doc__属性, 函数对象还有很多属性,对于下面的函数,可以使用dir()查看函数具有的属性: def factorial(n): r ...

  5. 2018-2019-20172329 《Java软件结构与数据结构》第四周学习总结

    2018-2019-20172329 <Java软件结构与数据结构>第四周学习总结 经过这样一个国庆节的假期,心中只有一个想法,这个国庆假期放的,不如不放呢!! 教材学习内容总结 < ...

  6. Controller与Switch建立连接

    连接建立 控制器和交换机认识的过程. 用于交互Openflow版本,如果不同则没有后续. 同1. 特征请求,控制器询问交换机的特征信息. 交换机回复控制器,相当于把整个交换机的所有配置都告诉控制器了. ...

  7. (一)java数据类型图

    ┏数值型━┳━整数型:byte short int long               ┏基本数据类型━━┫              ┗━浮点型:float double              ...

  8. 按照事务类型分析 DB2 事物的性能

    概述 事务是数据库系统中的核心概念之一.作为数据库系统的逻辑工作单元(Unit of Work),事务必须具有四个属性,即原子性.一致性.隔离性和持久性(ACID).数据库系统往往通过锁机制保证事务的 ...

  9. git找回当前目录下误删的所有文件

    git checkout . 参考:http://opentechschool.github.io/social-coding/extras/delete-restore.html

  10. 重写JdbcRDD支持Sql命名参数和分区

    Spark提供的JdbcRDD很不好用,没法指定命名参数,而且必须要提供两个Long类型的参数表示分区的范围,如果数据表没有long类型的字段或者不需要条件,那就不能用JdbcRDD了.这里我简单重写 ...