题目链接

BZOJ2216

题解

学过高中数学都应知道,我们要求\(p\)的极值,参变分离为

\[h_j + sqrt{|i - j|} - h_i \le p
\]

实际上就是求\(h_j + sqrt{|i - j|} - h_i\)的最大值

就可以设\(f[i]\)表示对\(i\)最大的该式的值

绝对值通常要去掉,一般可以通过方向性,我们只需每次转移时令\(i > j\),正反转移两次即可

现在式子变为

\[f[i] = max\{h_j + \sqrt{i - j}\} - h_i
\]

发现\(\sqrt{i - j}\)依旧无法处理,无法展开使用我们喜闻乐见的斜率优化

此时就可以考虑这个式子是否具有决策单调性

我们考虑对于\(i'<i\),我们的决策为\(h_j + sqrt{i' - j}\)

那么对于\(forall k < j\)有\(h_k + sqrt{i' - k} < h_j + sqrt{i' - j}\)

现在我们用\(i\)替换\(i'\)

式子变为\(h_k + sqrt{i - k}\)和\(h_j + sqrt{i - j}\)

\(h_k\)和\(h_j\)是没有变化的,如果\(sqrt{i - j}\)的增长比\(sqrt{i - k}\)的增长要快,我们就可认定\(i\)替换\(i'\)后,\(k\)依旧无法作为最优决策

考虑函数

\[f(x) = \sqrt{x}
\]

\[f'(x) = \frac{1}{2\sqrt{x}}
\]

显然当\(x\)越大增长率越慢,而\(i' - k > i' - j\),\(\sqrt{i - j}\)的增长的确比\(\sqrt{i - k}\)的增长要快

得证

所以用队列维护三元组优化即可

复杂度\(O(nlogn)\)

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 500005,maxm = 100005;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
double f[maxn],h[maxn];
int n,head,tail,ans[maxn];
struct tri{int l,r,pos;}q[maxn << 1];
inline double cal(int i,int j){
return h[j] + sqrt(i - j) - h[i];
}
inline bool check(int pos,int i,int j){
return cal(pos,i) >= cal(pos,j);
}
void work(){
q[head = tail = 0] = (tri){1,n,1};
tri u;
for (int i = 1; i <= n; i++){
ans[i] = max(ans[i],(int)ceil(cal(i,q[head].pos)));
q[head].l++;
if (q[head].l > q[head].r) head++;
while (head <= tail){
u = q[tail--];
if (!check(u.r,i,u.pos)){
q[++tail] = u;
if (u.r + 1 <= n) q[++tail] = (tri){u.r + 1,n,i};
break;
}
if (check(u.l,i,u.pos)){
if (head > tail){
q[++tail] = (tri){i + 1,n,i};
break;
}
continue;
}
else {
int l = u.l,r = u.r,mid;
while (l < r){
mid = l + r >> 1;
if (check(mid,i,u.pos)) r = mid;
else l = mid + 1;
}
q[++tail] = (tri){u.l,l - 1,u.pos};
q[++tail] = (tri){l,n,i};
break;
}
}
}
}
int main(){
n = read();
for (int i = 1; i <= n; i++) h[i] = read();
work();
reverse(h + 1,h + 1 + n);
reverse(ans + 1,ans + 1 + n);
work();
for (int i = n; i; i--)
printf("%d\n",ans[i]);
return 0;
}

BZOJ2216 [Poi2011]Lightning Conductor 【决策单调性dp】的更多相关文章

  1. LOJ2074/2157 JSOI2016/POI2011 Lightning Conductor 决策单调性DP

    传送门 我们相当于要求出\(f_i = \max\limits_{j=1}^{n} (a_j + \sqrt{|i-j|})\).这个绝对值太烦人了,考虑对于\(i>j\)和\(i<j\) ...

  2. 【BZOJ2216】[Poi2011]Lightning Conductor 决策单调性

    [BZOJ2216][Poi2011]Lightning Conductor Description 已知一个长度为n的序列a1,a2,...,an.对于每个1<=i<=n,找到最小的非负 ...

  3. P3515 [POI2011]Lightning Conductor[决策单调性优化]

    给定一序列,求对于每一个$a_i$的最小非负整数$p_i$,使得$\forall j \neq i $有$ p_i>=a_j-a_i+ \sqrt{|i-j|}$. 绝对值很烦 ,先分左右情况单 ...

  4. 洛谷 P3515 [ POI 2011 ] Lightning Conductor —— 决策单调性DP

    题目:https://www.luogu.org/problemnew/show/P3515 决策单调性... 参考TJ:https://www.cnblogs.com/CQzhangyu/p/725 ...

  5. BZOJ_2216_[Poi2011]Lightning Conductor_决策单调性

    BZOJ_2216_[Poi2011]Lightning Conductor_决策单调性 Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n, ...

  6. BZOJ2216 Poi2011 Lightning Conductor 【决策单调性优化DP】

    Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt( ...

  7. BZOJ2216: [Poi2011]Lightning Conductor(DP 决策单调性)

    题意 题目链接 Sol 很nice的决策单调性题目 首先把给出的式子移项,我们要求的$P_i = max(a_j + \sqrt{|i - j|}) - a_i$. 按套路把绝对值拆掉,$p_i = ...

  8. bzoj2216: [Poi2011]Lightning Conductor(分治决策单调性优化)

    每个pi要求 这个只需要正反DP(?)一次就行了,可以发现这个是有决策单调性的,用分治优化 #include<iostream> #include<cstring> #incl ...

  9. BZOJ2216 : [Poi2011]Lightning Conductor

    $f[i]=\max(a[j]+\lceil\sqrt{|i-j|}\rceil)$, 拆开绝对值,考虑j<i,则决策具有单调性,j>i同理, 所以可以用分治$O(n\log n)$解决. ...

随机推荐

  1. 利用存储过程生成大量的数据(oracle,mysql)

    在进行查询操作的性能测试时,往往需要测试大数据量模式下的查询功能的性能,这是就需要我们去创造一些测试数据来填充数据库,来模拟真是环境,造数据的方式有很多种,可以使用loadrunner,jmeter等 ...

  2. Cocoa Touch提供了哪几种Core Animation过渡类型?

    过渡动画通过 type 设置不同的动画效果, CATransition 有多种过渡效果, 但其实 Apple 官方的SDK只提供了四种: fade 淡出 默认 moveIn 覆盖原图 push 推出 ...

  3. VirtualBox主机和虚拟机互相通信

    默认情况下VirtualBox虚拟机网络设置为网络地址转换,虚拟机中的地址一般是10.0.2.x,虚拟机中访问主机只需要访问默认网关地址即可,但是主机访问虚拟机就需要增加一些配置了,方法有以下几种: ...

  4. bootstrap form样式及数据提交

    1.基本form布局 想要把form表单弄成两列的表格样式,奈何前端不太懂,记录下样式便于下次使用. form-group :增加盒子的下边界 form-control: 充满整个父元素,并且有换行作 ...

  5. 机器学习与R语言——基本语法

    一.注释 1.选中要注释的内容,快捷键Ctrl+Shift+C(取消注释方法相同) 2.在需注释内容前输入# #需注释的内容 3.利用if语句,将判断条件设置为false则可跳过if语句中的内容,相当 ...

  6. 英特尔® 实感™ 前置摄像头 SR300 和 F200 的比较

    原文地址 简介 SR300 是支持 Microsoft Windows 10 操作系统的第二代英特尔® 实感™ 前置摄像头. 与 F200 摄像头型号相似,SR300 使用编码光深技术,在更小范围内创 ...

  7. Spark之spark shell

    前言:要学习spark程序开发,建议先学习spark-shell交互式学习,加深对spark程序开发的理解.spark-shell提供了一种学习API的简单方式,以及一个能够进行交互式分析数据的强大工 ...

  8. spring-boot Jpa配置

    spring.jpa.hibernate.ddl-auto ddl-auto:create----每次运行该程序,没有表格会新建表格,表内有数据会清空 ddl-auto:create-drop---- ...

  9. 作业要求20181113-4 Beta阶段第1周/共2周 Scrum立会报告+燃尽图 02

    作业要求:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2384 版本控制:[https://git.coding.net/lglr201 ...

  10. int 和 Integer的区别

    int是基本类型,默认值为0,int a=5;a只能用来计算,一般作为数值参数. Integer是引用类型,默认值为null, Integer b=5;b是一个对象,它可以有很多方法,一般做数值转换, ...