矩阵的特征值和特征向量的雅克比算法C/C++实现
矩阵的特征值和特征向量是线性代数以及矩阵论中很重要的一个概念。在遥感领域也是经经常使用到。比方多光谱以及高光谱图像的主成分分析要求解波段间协方差矩阵或者相关系数矩阵的特征值和特征向量。
依据普通线性代数中的概念,特征值和特征向量能够用传统的方法求得,可是实际项目中一般都是用数值分析的方法来计算,这里介绍一下雅可比迭代法求解特征值和特征向量。
雅克比方法用于求实对称阵的所有特征值、特征向量。
对于实对称阵 A,必有正交阵 U。使
U TA U = D。
当中 D 是对角阵,其主对角线元 li 是 A 的特征值. 正交阵 U 的第 j 列是 A 的属于 li 的特征向量。
原理:Jacobi 方法用平面旋转对矩阵 A 做类似变换,化A 为对角阵,进而求出特征值与特征向量。
既然用到了旋转,这里就介绍一下旋转矩阵。
对于 p ≠ q,以下定义的 n 阶矩阵Upq 是平面旋转矩阵。
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvemhvdXh1Z3VhbmcyMzY=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="" />
easy验证 Upq是正交阵。
对于向量x,Upq x 相当于把坐标轴Oxp和 Oxq 于所在的平面内旋转角度 j .
变换过程: 在保证类似条件下,使主对角线外元素趋于零!
记 n 阶方阵A = [aij], 对 A 做以下的变换:
A1= UpqTAUpq,
A1 仍然是实对称阵,由于,UpqT =Upq-1,知A1与 A 的特征值同样。
前面说了雅可比是一种迭代算法。所以每一步迭代时,须要求出旋转后新的矩阵,那么新的矩阵元素怎样求,这里给出详细公式例如以下:
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvemhvdXh1Z3VhbmcyMzY=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="" />
由上面的一组公式能够看到:
(1)矩阵A1 的第p 行、列与第 q 行、列中的元素发生了变化,其他行、列中的元素不变。
(2)p、q各自是前一次的迭代矩阵A的非主对角线上绝对值最大元素的行列号
(3) j是旋转角度。能够由以下的公式计算:
归纳能够得到雅可比迭代法求解矩阵特征值和特征向量的详细过程例如以下:
(1) 初始化特征向量为对角阵V。即主对角线的元素都是1.其他元素为0。
(2) 在A的非主对角线元素中,找到绝对值最大元素 apq 。
(3) 用式(3.14)计算tan2j,求 cosj, sinj 及矩阵Upq .
(4) 用公式(1)-(4)求A1;用当前特征向量矩阵V乘以矩阵Upq得到当前的特征向量V。
(5) 若当前迭代前的矩阵A的非主对角线元素中最大值小于给定的阈值e时。停止计算;否则, 令A = A1 , 反复运行(2) ~ (5)。 停止计算时。得到特征值 li≈(A1) ij ,i,j= 1,2,…,n.以及特征向量V。
(6) 这一步可选。
依据特征值的大小从大到小的顺序又一次排列矩阵的特征值和特征向量。
到如今为止,每一步的计算过程都十分清楚了,写出代码也就不是难事了,详细代码例如以下:
/**
* @brief 求实对称矩阵的特征值及特征向量的雅克比法
* 利用雅格比(Jacobi)方法求实对称矩阵的所有特征值及特征向量
* @param pMatrix 长度为n*n的数组。存放实对称矩阵
* @param nDim 矩阵的阶数
* @param pdblVects 长度为n*n的数组,返回特征向量(按列存储)
* @param dbEps 精度要求
* @param nJt 整型变量。控制最大迭代次数
* @param pdbEigenValues 特征值数组
* @return
*/
bool CPCAAlg::JacbiCor(double * pMatrix,int nDim, double *pdblVects, double *pdbEigenValues, double dbEps,int nJt)
{
for(int i = 0; i < nDim; i ++)
{
pdblVects[i*nDim+i] = 1.0f;
for(int j = 0; j < nDim; j ++)
{
if(i != j)
pdblVects[i*nDim+j]=0.0f;
}
} int nCount = 0; //迭代次数
while(1)
{
//在pMatrix的非对角线上找到最大元素
double dbMax = pMatrix[1];
int nRow = 0;
int nCol = 1;
for (int i = 0; i < nDim; i ++) //行
{
for (int j = 0; j < nDim; j ++) //列
{
double d = fabs(pMatrix[i*nDim+j]); if((i!=j) && (d> dbMax))
{
dbMax = d;
nRow = i;
nCol = j;
}
}
} if(dbMax < dbEps) //精度符合要求
break; if(nCount > nJt) //迭代次数超过限制
break; nCount++; double dbApp = pMatrix[nRow*nDim+nRow];
double dbApq = pMatrix[nRow*nDim+nCol];
double dbAqq = pMatrix[nCol*nDim+nCol]; //计算旋转角度
double dbAngle = 0.5*atan2(-2*dbApq,dbAqq-dbApp);
double dbSinTheta = sin(dbAngle);
double dbCosTheta = cos(dbAngle);
double dbSin2Theta = sin(2*dbAngle);
double dbCos2Theta = cos(2*dbAngle); pMatrix[nRow*nDim+nRow] = dbApp*dbCosTheta*dbCosTheta +
dbAqq*dbSinTheta*dbSinTheta + 2*dbApq*dbCosTheta*dbSinTheta;
pMatrix[nCol*nDim+nCol] = dbApp*dbSinTheta*dbSinTheta +
dbAqq*dbCosTheta*dbCosTheta - 2*dbApq*dbCosTheta*dbSinTheta;
pMatrix[nRow*nDim+nCol] = 0.5*(dbAqq-dbApp)*dbSin2Theta + dbApq*dbCos2Theta;
pMatrix[nCol*nDim+nRow] = pMatrix[nRow*nDim+nCol]; for(int i = 0; i < nDim; i ++)
{
if((i!=nCol) && (i!=nRow))
{
int u = i*nDim + nRow; //p
int w = i*nDim + nCol; //q
dbMax = pMatrix[u];
pMatrix[u]= pMatrix[w]*dbSinTheta + dbMax*dbCosTheta;
pMatrix[w]= pMatrix[w]*dbCosTheta - dbMax*dbSinTheta;
}
} for (int j = 0; j < nDim; j ++)
{
if((j!=nCol) && (j!=nRow))
{
int u = nRow*nDim + j; //p
int w = nCol*nDim + j; //q
dbMax = pMatrix[u];
pMatrix[u]= pMatrix[w]*dbSinTheta + dbMax*dbCosTheta;
pMatrix[w]= pMatrix[w]*dbCosTheta - dbMax*dbSinTheta;
}
} //计算特征向量
for(int i = 0; i < nDim; i ++)
{
int u = i*nDim + nRow; //p
int w = i*nDim + nCol; //q
dbMax = pdblVects[u];
pdblVects[u] = pdblVects[w]*dbSinTheta + dbMax*dbCosTheta;
pdblVects[w] = pdblVects[w]*dbCosTheta - dbMax*dbSinTheta;
} } //对特征值进行排序以及又一次排列特征向量,特征值即pMatrix主对角线上的元素
std::map<double,int> mapEigen;
for(int i = 0; i < nDim; i ++)
{
pdbEigenValues[i] = pMatrix[i*nDim+i]; mapEigen.insert(make_pair( pdbEigenValues[i],i ) );
} double *pdbTmpVec = new double[nDim*nDim];
std::map<double,int>::reverse_iterator iter = mapEigen.rbegin();
for (int j = 0; iter != mapEigen.rend(),j < nDim; ++iter,++j)
{
for (int i = 0; i < nDim; i ++)
{
pdbTmpVec[i*nDim+j] = pdblVects[i*nDim + iter->second];
} //特征值又一次排列
pdbEigenValues[j] = iter->first;
} //设定正负号
for(int i = 0; i < nDim; i ++)
{
double dSumVec = 0;
for(int j = 0; j < nDim; j ++)
dSumVec += pdbTmpVec[j * nDim + i];
if(dSumVec<0)
{
for(int j = 0;j < nDim; j ++)
pdbTmpVec[j * nDim + i] *= -1;
}
} memcpy(pdblVects,pdbTmpVec,sizeof(double)*nDim*nDim);
delete []pdbTmpVec; return 1;
}
矩阵的特征值和特征向量的雅克比算法C/C++实现的更多相关文章
- 采用梯度下降优化器(Gradient Descent optimizer)结合禁忌搜索(Tabu Search)求解矩阵的全部特征值和特征向量
[前言] 对于矩阵(Matrix)的特征值(Eigens)求解,采用数值分析(Number Analysis)的方法有一些,我熟知的是针对实对称矩阵(Real Symmetric Matrix)的特征 ...
- 利用python做矩阵的简单运算(行列式、特征值、特征向量等的求解)
import numpy as np lis = np.mat([[1,2,3],[3,4,5],[4,5,6]]) print(np.linalg.inv(lis)) # 求矩阵的逆矩阵 [[-1. ...
- (原)使用mkl计算特征值和特征向量
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/5585271.html 参考文档:mkl官方文档 lapack_int LAPACKE_sgeev(in ...
- 特征值、特征向量与PCA算法
一.复习几个矩阵的基本知识 1. 向量 1)既有大小又有方向的量成为向量,物理学中也被称为矢量,向量的坐标表示a=(2,3),意为a=2*i + 3*j,其中i,j分别是x,y轴的单位向量. 2)向量 ...
- c语言计算矩阵特征值和特征向量-1(幂法)
#include <stdio.h> #include <math.h> #include <stdlib.h> #define M 3 //方阵的行数 列数 #d ...
- opencv学习之路(38)、Mat像素统计基础——均值,标准差,协方差;特征值,特征向量
本文部分内容转自 https://www.cnblogs.com/chaosimple/p/3182157.html 一.统计学概念 二.为什么需要协方差 三.协方差矩阵 注:上述协方差矩阵还需要除以 ...
- eig()函数求特征值、特征向量、归一化
在MATLAB中,计算矩阵A的特征值和特征向量的函数是eig(A),常用的调用格式有 5种:(1) E=eig(A):求矩阵A的全部特征值,构成向量E. 想求最大特征值用:max(eig(A))就好了 ...
- Python与矩阵论——特征值与特征向量
Python计算特征值与特征向量案例 例子1 import numpy as np A = np.array([[3,-1],[-1,3]]) print('打印A:\n{}'.format(A)) ...
- Hermite 矩阵的特征值不等式
将要学习 关于 Hermite 矩阵的特征值不等式. Weyl 定理 以及推论. Weyl 定理 Hermann Weyl 的如下定理是大量不等式的基础,这些不等式要么涉及两个 Hermite 矩 ...
随机推荐
- Android Gradle 引用本地 AAR 的几种方式
折衷方案: 1.方式2 - 不完美解决办法2 2.再使用"自定义Gradle代码"来减轻重复设置的问题. 自定义Gradle代码如下: repositories { flatDir ...
- [na]数据包由于isp不稳定丢包-seq&ack
知识参考: http://www.xianren.org/net/wireshark-q.html 背景 总行wac管理分行ap.手机终端打不开portal页面. 2,分别抓包(portal页面从wa ...
- [Linux]运维三十六计--腾讯两位大神的总结
这里是腾讯两位大神梁定安.周小军总记得运维DBA三十六计,So有道理
- CCNotificationCenter(二)---NotificationCenterTest
//类的定义 #ifndef __NOTIFICATIONCENTERTEST_H__ #define __NOTIFICATIONCENTERTEST_H__ #include "coco ...
- How do I iterate over a Scala List (or more generally, a sequence) using theforeach method or for loop?
Scala List/sequence FAQ: How do I iterate over a Scala List (or more generally, a sequence) using th ...
- gulp的使用以及Gulp新手入门教程
Gulp新手入门教程 原文 http://w3ctrain.com/2015/12/22/gulp-for-beginners/ Gulp 是一个自动化工具,前端开发者可以使用它来处理常见任务: 搭 ...
- Oracle快速测试连接是否成功
Oracle 客户端建立了TNS连接后,可以快速查看连接是否成功. 1.在cmd中执行命令tnsping orcl(全局数据库名称),即可.以下是命令执行后的示例. 2.如果上一步成功,可以进一步执行 ...
- 基于html5鼠标悬停图片动画展示效果
分享一款基于html5鼠标悬停图片动画展示效果.里面包含两款不同效果的html5图片展示效果.效果图如下: 在线预览 源码下载 实现的代码. html代码: <div class=" ...
- 关于Java开发过程中质量提升-1代码格式配置
在项目开发维护中,编码规范作为开发规范的一个组成部分,是十分重要和必须的,它不仅仅是为了提高开发效率,也有利于降低后期维护开发的成本.编码规范的根本目的就是要让不仅代码可以一目了然,也可以很容易的理解 ...
- 使用System.IO.Combine(string path1, string path2, string path3)四个参数的重载函数提示`System.IO.Path.Combine(string, string, string, string)' is inaccessible due to its protection level
今天用Unity5.5.1开发提取Assets目录的模块,使用时采用System.IO.Path.Combine(string, string, string, string)函数进行路径生成 明明是 ...