这篇博客对Tarjan算法的原理和过程模拟的很详细。

转载大佬的博客https://www.cnblogs.com/JVxie/p/4854719.html

第二次更新,之前转载的博客虽然胜在详细,但其实还是对递归,集合划分,查找还是有些抽象,刚刚恰好看了千千大佬的一篇博客,他在讲解Tarjan算法的时候,用了不同的颜色来区别不同的集合,我觉得这一点非常的好,现在我自己也对Tarjan算法有了一些理解,使用DFS的目的首先是递归中‘递’过程,不断深搜到底;接着回溯使用并查集划分集合,要找LCA的会被放入一个集合中,其LCA就是这个集合的祖先。

转载千千大佬的个人博客加载在本篇博文之后https://www.dreamwings.cn/lca/4874.html

首先什么是最近公共祖先:

在一棵没有环的树上,每个节点肯定有其父亲节点和祖先节点,而最近公共祖先,就是两个节点在这棵树上深度最大公共祖先节点。换

句话说,就是两个点在这棵树上距离最近的公共祖先节点。所以LCA主要是用来处理当两个点仅有唯一一条确定的最短路径时的路径。

有人可能会问:那他本身或者其父亲节点是否可以作为祖先节点呢?

答案是肯定的,很简单,按照人的亲戚观念来说,你的父亲也是你的祖先,而LCA还可以将自己视为祖先节点

举个例子吧,如下图所示最近公共祖先是2最近公共祖先最近公共祖先。 

这就是最近公共祖先的基本概念了,那么我们该如何去求这个最近公共祖先呢?

通常初学者都会想到最简单粗暴的一个办法:对于每个询问,遍历所有的点,时间复杂度为O(n*q),很明显,n和q一般不会很小

常用的求LCA的算法有:Tarjan/DFS+ST/倍增

后两个算法都是在线算法,也很相似,时间复杂度在O(logn)~O(nlogn)之间,我个人认为较难理解。

有的题目是可以用线段树来做的,但是其代码量很大,时间复杂度也偏高,在O(n)~O(nlogn)之间,优点在于也是简单粗暴

这篇博客主要是要介绍一下Tarjan算法(其实是我不会在线...)。

什么是Tarjan(离线)算法呢?顾名思义,就是在一次遍历中把所有询问一次性解决,所以其时间复杂度是O(n+q)

Tarjan算法的优点在于相对稳定,时间复杂度也比较居中,也很容易理解。

下面详细介绍一下Tarjan算法的基本思路:

1.任选一个点为根节点,从根节点开始。

2.遍历该点u所有子节点v,并标记这些子节点v已被访问过。

3.若是v还有子节点,返回2,否则下一步。

4.合并v到u上。

5.寻找与当前点u有询问关系的点v。

6.若是v已经被访问过了,则可以确认u和v的最近公共祖先为v被合并到的父亲节点a。

遍历的话需要用到dfs来遍历(我相信来看的人都懂吧...),至于合并,最优化的方式就是利用并查集来合并两个节点。

下面上伪代码:

   1 Tarjan(u)//marge和find为并查集合并函数和查找函数
  2 {
  3 for each(u,v) //访问所有u子节点v
  4 {
   5 Tarjan(v); //继续往下遍历
   6 marge(u,v); //合并v到u上
   7 标记v被访问过;
   8 }
   9 for each(u,e) //访问所有和u有询问关系的e
  10 {
  11 如果e被访问过;
  12 u,e的最近公共祖先为find(e);
  13 }
  14 }

个人感觉这样还是有很多人不太理解,所以我打算模拟一遍给大家看。

建议拿着纸和笔跟着我的描述一起模拟!!

假设我们有一组数据 9个节点 8条边 联通情况如下:

1--2,1--3,2--4,2--5,3--6,5--7,5--8,7--9 即下图所示的树

设我们要查找最近公共祖先的点为9--8,4--6,7--5,5--3;

设f[]数组为并查集的父亲节点数组,初始化f[i]=i,vis[]数组为是否访问过的数组,初始为0; 

下面开始模拟过程:

取1为根节点往下搜索发现有两个儿子2和3;

先搜2,发现2有两个儿子4和5,先搜索4,发现4没有子节点,则寻找与其有关系的点;

发现6与4有关系,但是vis[6]=0,即6还没被搜过,所以不操作

发现没有和4有询问关系的点了,返回此前一次搜索,更新vis[4]=1

    

表示4已经被搜完,更新f[4]=2,继续搜5,发现5有两个儿子7和8;

搜7,发现7有一个子节点9,搜索9,发现没有子节点,寻找与其有关系的点;

发现8和9有关系,但是vis[8]=0,即8没被搜到过,所以不操作;

发现没有和9有询问关系的点了,返回此前一次搜索,更新vis[9]=1

表示9已经被搜完,更新f[9]=7,发现7没有没被搜过的子节点了,寻找与其有关系的点;

发现5和7有关系,但是vis[5]=0,所以不操作

发现没有和7有关系的点了,返回此前一次搜索,更新vis[7]=1

    

表示7已经被搜完,更新f[7]=5,继续搜8,发现8没有子节点,则寻找与其有关系的点;

发现9与8有关系,此时vis[9]=1,则他们的最近公共祖先find(9)=5

(find(9)的顺序为f[9]=7-->f[7]=5-->f[5]=5 return 5;)

发现没有与8有关系的点了,返回此前一次搜索,更新vis[8]=1

表示8已经被搜完,更新f[8]=5,发现5没有没搜过的子节点了,寻找与其有关系的点;

    

发现7和5有关系,此时vis[7]=1,所以他们的最近公共祖先find(7)=5

(find(7)的顺序为f[7]=5-->f[5]=5 return 5;)

又发现5和3有关系,但是vis[3]=0,所以不操作,此时5的子节点全部搜完了;

返回此前一次搜索,更新vis[5]=1,表示5已经被搜完,更新f[5]=2

发现2没有未被搜完的子节点,寻找与其有关系的点;

又发现没有和2有关系的点,则此前一次搜索,更新vis[2]=1

    

表示2已经被搜完,更新f[2]=1,继续搜3,发现3有一个子节点6;

搜索6,发现6没有子节点,则寻找与6有关系的点,发现4和6有关系;

此时vis[4]=1,所以它们的最近公共祖先find(4)=1;

(find(4)的顺序为f[4]=2-->f[2]=2-->f[1]=1 return 1;)

发现没有与6有关系的点了,返回此前一次搜索,更新vis[6]=1,表示6已经被搜完了;

    

更新f[6]=3,发现3没有没被搜过的子节点了,则寻找与3有关系的点;

发现5和3有关系,此时vis[5]=1,则它们的最近公共祖先find(5)=1

(find(5)的顺序为f[5]=2-->f[2]=1-->f[1]=1 return 1;)

发现没有和3有关系的点了,返回此前一次搜索,更新vis[3]=1

    

更新f[3]=1,发现1没有被搜过的子节点也没有有关系的点,此时可以退出整个dfs了。

经过这次dfs我们得出了所有的答案,有没有觉得很神奇呢?是否对Tarjan算法有更深层次的理解了呢?

我们假设在如下树中模拟 Tarjan 过程(节点数量少一点可以画更少的图o( ̄▽ ̄)o)

存在查询: LCA(T,3,4)、LCA(T,4,6)、LCA(T,2,1)

注意:每个节点的颜色代表它当前属于哪一个集合,橙色线条为搜索路径,黑色线条为合并路径。

当前所在位置为 u = 1 ,未遍历孩子集合 v = {2,5} ,向下遍历。

当前所在位置为 u = 2 ,未遍历孩子集合 v = {3,4} ,向下遍历。

当前所在位置为 u = 3 ,未遍历孩子集合 v = {} ,递归到达最底层,遍历所有相关查询发现存在 LCA(T,3,4) ,但是节点 4 此时标记未访问,因此什么也不做,该层递归结束。

递归返回,当前所在位置 u = 2 ,合并节点 3u 所在集合,标记 vis[3] = true ,此时未遍历孩子集合 v = {4} ,向下遍历。

当前所在位置 u = 4 ,未遍历孩子集合 v = {} ,遍历所有相关查询发现存在 LCA(T,3,4) ,且 vis[3] = true ,此时得到该查询的解为节点 3 所在集合的首领,即 LCA(T,3,4) = 2 ;又发现存在相关查询 LCA(T,4,6) ,但是节点 6 此时标记未访问,因此什么也不做。该层递归结束。

递归返回,当前所在位置 u = 2 ,合并节点 4u 所在集合,标记 vis[4] = true ,未遍历孩子集合 v = {} ,遍历相关查询发现存在 LCA(T,2,1) ,但是节点 1 此时标记未访问,因此什么也不做,该层递归结束。

递归返回,当前所在位置 u = 1 ,合并节点 2u 所在集合,标记 vis[2] = true ,未遍历孩子集合 v = {5} ,继续向下遍历。

当前所在位置 u = 5 ,未遍历孩子集合 v = {6} ,继续向下遍历。

当前所在位置 u = 6 ,未遍历孩子集合 v = {} ,遍历相关查询发现存在 LCA(T,4,6) ,且 vis[4] = true ,因此得到该查询的解为节点 4 所在集合的首领,即 LCA(T,4,6) = 1 ,该层递归结束。

递归返回,当前所在位置 u = 5 ,合并节点 6u 所在集合,并标记 vis[6] = true ,未遍历孩子集合 v = {} ,无相关查询因此该层递归结束。

递归返回,当前所在位置 u = 1 ,合并节点 5u 所在集合,并标记 vis[5] = true ,未遍历孩子集合 v = {} ,遍历相关查询发现存在 LCA(T,2,1) ,此时该查询的解便是节点 2 所在集合的首领,即 LCA(T,2,1) = 1 ,递归结束。

至此整个 Tarjan 算法便结束啦~

PS:不要在意最终根节点的颜色和其他节点颜色有一点点小小差距,可能是千千在染色的时候没仔细看,总之就这样咯~

PPS:所谓的首领就是、就是首领啦~

 

LCA最近公共祖先(Tarjan离线算法)的更多相关文章

  1. LCA 最近公共祖先 Tarjan(离线)算法的基本思路及其算法实现

    首先是最近公共祖先的概念(什么是最近公共祖先?): 在一棵没有环的树上,每个节点肯定有其父亲节点和祖先节点,而最近公共祖先,就是两个节点在这棵树上深度最大的公共的祖先节点. 换句话说,就是两个点在这棵 ...

  2. LCA最近公共祖先 Tarjan离线算法

    学习博客:  http://noalgo.info/476.html 讲的很清楚! 对于一颗树,dfs遍历时,先向下遍历,并且用并查集维护当前节点和父节点的集合.这样如果关于当前节点(A)的关联节点( ...

  3. LCA 最近公共祖先 tarjan离线 总结 结合3个例题

    在网上找了一些对tarjan算法解释较好的文章 并加入了自己的理解 LCA(Least Common Ancestor),顾名思义,是指在一棵树中,距离两个点最近的两者的公共节点.也就是说,在两个点通 ...

  4. LCA问题的ST,tarjan离线算法解法

    一  ST算法与LCA 介绍 第一次算法笔记这样的东西,以前学算法只是笔上画画写写,理解了下,刷几道题,其实都没深入理解,以后遇到新的算法要把自己的理解想法写下来,方便日后回顾嘛>=< R ...

  5. LCA(最近公共祖先)离线算法Tarjan+并查集

    本文来自:http://www.cnblogs.com/Findxiaoxun/p/3428516.html 写得很好,一看就懂了. 在这里就复制了一份. LCA问题: 给出一棵有根树T,对于任意两个 ...

  6. 求LCA最近公共祖先的离线Tarjan算法_C++

    这个Tarjan算法是求LCA的算法,不是那个强连通图的 它是 离线 算法,时间复杂度是 O(m+n),m 是询问数,n 是节点数 它的优点是比在线算法好写很多 不过有些题目是强制在线的,此类离线算法 ...

  7. HDU 4547 CD操作 (LCA最近公共祖先Tarjan模版)

    CD操作 倍增法  https://i.cnblogs.com/EditPosts.aspx?postid=8605845 Time Limit : 10000/5000ms (Java/Other) ...

  8. LCA最近公共祖先——Tarjan模板

    LCA(Lowest Common Ancestors),即最近公共祖先,是指在有根树中,找出某两个结点u和v最近的公共祖先. Tarjan是一种离线算法,时间复杂度O(n+Q),Q表示询问次数,其中 ...

  9. LCA(最近公共祖先)--tarjan离线算法 hdu 2586

    HDU 2586 How far away ? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/ ...

随机推荐

  1. Linux系统初学-第三课 Linux网络配置1

    Linux系统初学-第三课 Linux网络配置 1.动态IP配置 配置文件路径 /etc/sysconfig/network-scripts/ ls查看网卡eth0,其中HWADDR值得获取:ifco ...

  2. js的组合函数

    1.组合函数即由若干个函数组合成一个新的函数,同时完成数据的传递 1>最简单版本 这种方法实现的组合函数,需要我们指定函数的执行顺序 /**第一种方法 */ function add(a, b) ...

  3. pdf.js 打印出错

    两种方法:1.使用0.8.223版本的pdf.js2.viewer.js中 line 3642 PRINT_OUTPUT_SCALE=1,line 3639 pdfPage.getViewPort(2 ...

  4. HCNP - Server

    Server DHCP配置 DHCP服务器配置: 第一种方法:自动配置 路由上面配置网关,开启dhcp服务 [R1]dhcp enable [R1-GigabitEthernet0/0/0]dhcp ...

  5. 接口测试jemeter使用

    使用jemeter5时要先添加环境变量,需要有JDK1.8及以上版本支持.这里主要对接口测试做一些说明. 以上就是常见的设置问题.在window上我们通常是不需要改动配置文件的,如果要在生产上执行测试 ...

  6. 韦东山linux学习之ubuntu 9.10 软件源 问题

    跟着开发板视频学习,安装了ubuntu9.10,然而由于现在官方已经不再提供软件更新的服务,软件我一直安装不上,搞了两天终于解决了. 一.安装VMware,配置等等就不详细说了,安装好系统后,网能连上 ...

  7. PHP中使用Redis接管文件存储Session详解

    前言 php默认使用文件存储session,如果并发量大,效率会非常低.而redis对高并发的支持非常好,可以利用redis替换文件来存储session. 最近就遇到了这个问题,之前找了网上的一套直播 ...

  8. 利用Docker设置Node.js

      docker是一个开源的应用容器引擎,可以为我们提供安全.可移植.可重复的自动化部署的方式.docker采用虚拟化的技术来虚拟化出应用程序的运行环境.如上图一样.docker就像一艘轮船.而轮船上 ...

  9. 冒泡排序,C语言实现

    冒泡排序是一种稳定排序,时间复杂度平均为O(n^2),最好的时间复杂度为O(n),最坏为O(n^2). 排序时每次只比较当前元素与后一个 元素的大小,如果当前元素大于后一个元素,则交换,如此循环直到队 ...

  10. MyDC总结

    需要补全的代码如下 public int evaluate(String expr) { int op1, op2, result = 0; String token; StringTokenizer ...