这篇博客对Tarjan算法的原理和过程模拟的很详细。

转载大佬的博客https://www.cnblogs.com/JVxie/p/4854719.html

第二次更新,之前转载的博客虽然胜在详细,但其实还是对递归,集合划分,查找还是有些抽象,刚刚恰好看了千千大佬的一篇博客,他在讲解Tarjan算法的时候,用了不同的颜色来区别不同的集合,我觉得这一点非常的好,现在我自己也对Tarjan算法有了一些理解,使用DFS的目的首先是递归中‘递’过程,不断深搜到底;接着回溯使用并查集划分集合,要找LCA的会被放入一个集合中,其LCA就是这个集合的祖先。

转载千千大佬的个人博客加载在本篇博文之后https://www.dreamwings.cn/lca/4874.html

首先什么是最近公共祖先:

在一棵没有环的树上,每个节点肯定有其父亲节点和祖先节点,而最近公共祖先,就是两个节点在这棵树上深度最大公共祖先节点。换

句话说,就是两个点在这棵树上距离最近的公共祖先节点。所以LCA主要是用来处理当两个点仅有唯一一条确定的最短路径时的路径。

有人可能会问:那他本身或者其父亲节点是否可以作为祖先节点呢?

答案是肯定的,很简单,按照人的亲戚观念来说,你的父亲也是你的祖先,而LCA还可以将自己视为祖先节点

举个例子吧,如下图所示最近公共祖先是2最近公共祖先最近公共祖先。 

这就是最近公共祖先的基本概念了,那么我们该如何去求这个最近公共祖先呢?

通常初学者都会想到最简单粗暴的一个办法:对于每个询问,遍历所有的点,时间复杂度为O(n*q),很明显,n和q一般不会很小

常用的求LCA的算法有:Tarjan/DFS+ST/倍增

后两个算法都是在线算法,也很相似,时间复杂度在O(logn)~O(nlogn)之间,我个人认为较难理解。

有的题目是可以用线段树来做的,但是其代码量很大,时间复杂度也偏高,在O(n)~O(nlogn)之间,优点在于也是简单粗暴

这篇博客主要是要介绍一下Tarjan算法(其实是我不会在线...)。

什么是Tarjan(离线)算法呢?顾名思义,就是在一次遍历中把所有询问一次性解决,所以其时间复杂度是O(n+q)

Tarjan算法的优点在于相对稳定,时间复杂度也比较居中,也很容易理解。

下面详细介绍一下Tarjan算法的基本思路:

1.任选一个点为根节点,从根节点开始。

2.遍历该点u所有子节点v,并标记这些子节点v已被访问过。

3.若是v还有子节点,返回2,否则下一步。

4.合并v到u上。

5.寻找与当前点u有询问关系的点v。

6.若是v已经被访问过了,则可以确认u和v的最近公共祖先为v被合并到的父亲节点a。

遍历的话需要用到dfs来遍历(我相信来看的人都懂吧...),至于合并,最优化的方式就是利用并查集来合并两个节点。

下面上伪代码:

   1 Tarjan(u)//marge和find为并查集合并函数和查找函数
  2 {
  3 for each(u,v) //访问所有u子节点v
  4 {
   5 Tarjan(v); //继续往下遍历
   6 marge(u,v); //合并v到u上
   7 标记v被访问过;
   8 }
   9 for each(u,e) //访问所有和u有询问关系的e
  10 {
  11 如果e被访问过;
  12 u,e的最近公共祖先为find(e);
  13 }
  14 }

个人感觉这样还是有很多人不太理解,所以我打算模拟一遍给大家看。

建议拿着纸和笔跟着我的描述一起模拟!!

假设我们有一组数据 9个节点 8条边 联通情况如下:

1--2,1--3,2--4,2--5,3--6,5--7,5--8,7--9 即下图所示的树

设我们要查找最近公共祖先的点为9--8,4--6,7--5,5--3;

设f[]数组为并查集的父亲节点数组,初始化f[i]=i,vis[]数组为是否访问过的数组,初始为0; 

下面开始模拟过程:

取1为根节点往下搜索发现有两个儿子2和3;

先搜2,发现2有两个儿子4和5,先搜索4,发现4没有子节点,则寻找与其有关系的点;

发现6与4有关系,但是vis[6]=0,即6还没被搜过,所以不操作

发现没有和4有询问关系的点了,返回此前一次搜索,更新vis[4]=1

    

表示4已经被搜完,更新f[4]=2,继续搜5,发现5有两个儿子7和8;

搜7,发现7有一个子节点9,搜索9,发现没有子节点,寻找与其有关系的点;

发现8和9有关系,但是vis[8]=0,即8没被搜到过,所以不操作;

发现没有和9有询问关系的点了,返回此前一次搜索,更新vis[9]=1

表示9已经被搜完,更新f[9]=7,发现7没有没被搜过的子节点了,寻找与其有关系的点;

发现5和7有关系,但是vis[5]=0,所以不操作

发现没有和7有关系的点了,返回此前一次搜索,更新vis[7]=1

    

表示7已经被搜完,更新f[7]=5,继续搜8,发现8没有子节点,则寻找与其有关系的点;

发现9与8有关系,此时vis[9]=1,则他们的最近公共祖先find(9)=5

(find(9)的顺序为f[9]=7-->f[7]=5-->f[5]=5 return 5;)

发现没有与8有关系的点了,返回此前一次搜索,更新vis[8]=1

表示8已经被搜完,更新f[8]=5,发现5没有没搜过的子节点了,寻找与其有关系的点;

    

发现7和5有关系,此时vis[7]=1,所以他们的最近公共祖先find(7)=5

(find(7)的顺序为f[7]=5-->f[5]=5 return 5;)

又发现5和3有关系,但是vis[3]=0,所以不操作,此时5的子节点全部搜完了;

返回此前一次搜索,更新vis[5]=1,表示5已经被搜完,更新f[5]=2

发现2没有未被搜完的子节点,寻找与其有关系的点;

又发现没有和2有关系的点,则此前一次搜索,更新vis[2]=1

    

表示2已经被搜完,更新f[2]=1,继续搜3,发现3有一个子节点6;

搜索6,发现6没有子节点,则寻找与6有关系的点,发现4和6有关系;

此时vis[4]=1,所以它们的最近公共祖先find(4)=1;

(find(4)的顺序为f[4]=2-->f[2]=2-->f[1]=1 return 1;)

发现没有与6有关系的点了,返回此前一次搜索,更新vis[6]=1,表示6已经被搜完了;

    

更新f[6]=3,发现3没有没被搜过的子节点了,则寻找与3有关系的点;

发现5和3有关系,此时vis[5]=1,则它们的最近公共祖先find(5)=1

(find(5)的顺序为f[5]=2-->f[2]=1-->f[1]=1 return 1;)

发现没有和3有关系的点了,返回此前一次搜索,更新vis[3]=1

    

更新f[3]=1,发现1没有被搜过的子节点也没有有关系的点,此时可以退出整个dfs了。

经过这次dfs我们得出了所有的答案,有没有觉得很神奇呢?是否对Tarjan算法有更深层次的理解了呢?

我们假设在如下树中模拟 Tarjan 过程(节点数量少一点可以画更少的图o( ̄▽ ̄)o)

存在查询: LCA(T,3,4)、LCA(T,4,6)、LCA(T,2,1)

注意:每个节点的颜色代表它当前属于哪一个集合,橙色线条为搜索路径,黑色线条为合并路径。

当前所在位置为 u = 1 ,未遍历孩子集合 v = {2,5} ,向下遍历。

当前所在位置为 u = 2 ,未遍历孩子集合 v = {3,4} ,向下遍历。

当前所在位置为 u = 3 ,未遍历孩子集合 v = {} ,递归到达最底层,遍历所有相关查询发现存在 LCA(T,3,4) ,但是节点 4 此时标记未访问,因此什么也不做,该层递归结束。

递归返回,当前所在位置 u = 2 ,合并节点 3u 所在集合,标记 vis[3] = true ,此时未遍历孩子集合 v = {4} ,向下遍历。

当前所在位置 u = 4 ,未遍历孩子集合 v = {} ,遍历所有相关查询发现存在 LCA(T,3,4) ,且 vis[3] = true ,此时得到该查询的解为节点 3 所在集合的首领,即 LCA(T,3,4) = 2 ;又发现存在相关查询 LCA(T,4,6) ,但是节点 6 此时标记未访问,因此什么也不做。该层递归结束。

递归返回,当前所在位置 u = 2 ,合并节点 4u 所在集合,标记 vis[4] = true ,未遍历孩子集合 v = {} ,遍历相关查询发现存在 LCA(T,2,1) ,但是节点 1 此时标记未访问,因此什么也不做,该层递归结束。

递归返回,当前所在位置 u = 1 ,合并节点 2u 所在集合,标记 vis[2] = true ,未遍历孩子集合 v = {5} ,继续向下遍历。

当前所在位置 u = 5 ,未遍历孩子集合 v = {6} ,继续向下遍历。

当前所在位置 u = 6 ,未遍历孩子集合 v = {} ,遍历相关查询发现存在 LCA(T,4,6) ,且 vis[4] = true ,因此得到该查询的解为节点 4 所在集合的首领,即 LCA(T,4,6) = 1 ,该层递归结束。

递归返回,当前所在位置 u = 5 ,合并节点 6u 所在集合,并标记 vis[6] = true ,未遍历孩子集合 v = {} ,无相关查询因此该层递归结束。

递归返回,当前所在位置 u = 1 ,合并节点 5u 所在集合,并标记 vis[5] = true ,未遍历孩子集合 v = {} ,遍历相关查询发现存在 LCA(T,2,1) ,此时该查询的解便是节点 2 所在集合的首领,即 LCA(T,2,1) = 1 ,递归结束。

至此整个 Tarjan 算法便结束啦~

PS:不要在意最终根节点的颜色和其他节点颜色有一点点小小差距,可能是千千在染色的时候没仔细看,总之就这样咯~

PPS:所谓的首领就是、就是首领啦~

 

LCA最近公共祖先(Tarjan离线算法)的更多相关文章

  1. LCA 最近公共祖先 Tarjan(离线)算法的基本思路及其算法实现

    首先是最近公共祖先的概念(什么是最近公共祖先?): 在一棵没有环的树上,每个节点肯定有其父亲节点和祖先节点,而最近公共祖先,就是两个节点在这棵树上深度最大的公共的祖先节点. 换句话说,就是两个点在这棵 ...

  2. LCA最近公共祖先 Tarjan离线算法

    学习博客:  http://noalgo.info/476.html 讲的很清楚! 对于一颗树,dfs遍历时,先向下遍历,并且用并查集维护当前节点和父节点的集合.这样如果关于当前节点(A)的关联节点( ...

  3. LCA 最近公共祖先 tarjan离线 总结 结合3个例题

    在网上找了一些对tarjan算法解释较好的文章 并加入了自己的理解 LCA(Least Common Ancestor),顾名思义,是指在一棵树中,距离两个点最近的两者的公共节点.也就是说,在两个点通 ...

  4. LCA问题的ST,tarjan离线算法解法

    一  ST算法与LCA 介绍 第一次算法笔记这样的东西,以前学算法只是笔上画画写写,理解了下,刷几道题,其实都没深入理解,以后遇到新的算法要把自己的理解想法写下来,方便日后回顾嘛>=< R ...

  5. LCA(最近公共祖先)离线算法Tarjan+并查集

    本文来自:http://www.cnblogs.com/Findxiaoxun/p/3428516.html 写得很好,一看就懂了. 在这里就复制了一份. LCA问题: 给出一棵有根树T,对于任意两个 ...

  6. 求LCA最近公共祖先的离线Tarjan算法_C++

    这个Tarjan算法是求LCA的算法,不是那个强连通图的 它是 离线 算法,时间复杂度是 O(m+n),m 是询问数,n 是节点数 它的优点是比在线算法好写很多 不过有些题目是强制在线的,此类离线算法 ...

  7. HDU 4547 CD操作 (LCA最近公共祖先Tarjan模版)

    CD操作 倍增法  https://i.cnblogs.com/EditPosts.aspx?postid=8605845 Time Limit : 10000/5000ms (Java/Other) ...

  8. LCA最近公共祖先——Tarjan模板

    LCA(Lowest Common Ancestors),即最近公共祖先,是指在有根树中,找出某两个结点u和v最近的公共祖先. Tarjan是一种离线算法,时间复杂度O(n+Q),Q表示询问次数,其中 ...

  9. LCA(最近公共祖先)--tarjan离线算法 hdu 2586

    HDU 2586 How far away ? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/ ...

随机推荐

  1. form组件-字段

    Form类 创建Form类时,主要涉及到 [字段] 和 [插件],字段用于对用户请求数据的验证,插件用于自动生成HTML 1.Django内置字段如下: Field required=True, 是否 ...

  2. No space left on device 解决 Cydia 安装应用错误

    在 Cydia 上搜索应用进行安装,提示错误:failed to write (No space left on device),从字面上的意思看是磁盘空间不够,导致写入错误,但是到 “关于” 里看到 ...

  3. 【JVM】TroubleShooting之内存溢出异常(OOM)与调优

    1. OOM概述 If your application's execution time becomes longer and longer, or if the operating system ...

  4. poj 2739 Sum of Consecutive Prime Numbers 尺取法

    Time Limit: 1000MS   Memory Limit: 65536K Description Some positive integers can be represented by a ...

  5. Linux入门第五天——shell脚本入门(下)基础语法之调试debug

    一.如何debug 1.通过sh命令的参数: sh [-nvx] scripts.sh 选项与参数: -n :不要执行 script,仅查询语法的问题: -v :再执行 sccript 前,先将 sc ...

  6. 20170531 课堂实践 MyOD

    MyOD 题目 编写MyOD.java 用java MyOD XXX实现Linux下od -tx -tc XXX的功能 Linux下od功能详解 od(octal dump)命令可以以八进制.十进制. ...

  7. 20145234黄斐《Java程序设计》第九周

    教材学习内容总结 整合数据库 JDBC入门 JDBC是用于执行SQL的解决方案,开发人员使用JDBC的标准接口,数据库厂商则对接口进行操作,开发人员无须接触底层数据库驱动程序的差异性,数据库本身是个独 ...

  8. Servlet——web.xml的配置

    <servlet>: <servlet-name>: 名称 <servlet-class>: 类名 <init-param>: 初始化参数(只有本ser ...

  9. STM32L431驱动带UC1698芯片调试记录

    1, 数据线连接方式,这次使用的是8080格式的接口,如下 2. 主要是信号和数据引脚 DATA0-DATA7  并口的数据 RST 复位信号 WR 写信号 RD 读信号 C/D 数据还是命令 CS片 ...

  10. STM32的备份寄存器测试

    1. 研究STM3的备份寄存器,注意,如果要测试这个例程的话,VBAT不能和VDD接一起,必须分开. 2. 理解,备份寄存器可以有VBAT独立供电,也就是外接电池,备份寄存器在VBAT供电情况下,如果 ...