次元传送门:洛谷P1966

思路

显然在两排中 每排第i小的分别对应就可取得最小值(对此不给予证明懒)

所以我们只在意两排的火柴是第几根 高度只需要用来进行排序(先把两个序列改成有序的方便离散化)

因此我们对火柴的高度进行离散化 把火柴高度变为1到n的序列

然后我们只需要对一个序列a固定 求另一个序列b相对于前一个序列a的逆序对即可

举个栗子

【题解】洛谷P1966 [NOIP2013TG] 火柴排队(树状数组+逆序对)的更多相关文章

  1. [树状数组+逆序对][NOIP2013]火柴排队

    火柴排队 题目描述 涵涵有两盒火柴,每盒装有n根火柴,每根火柴都有一个高度.现在将每盒中的火柴各自排成一列,同一列火柴的高度互不相同,两列火柴之间的距离定义为:∑ (ai-bi)2,i=1,2,3,. ...

  2. 洛谷P1966 【火柴排队】

    题解 P1966 [火柴排队] 说明: 在数学中有个公式: (a1-b1)^2+(a2-b2)^2<(a2-b1)^2+(a1-b2)^2 (你可以自己试着证一下) 两列火柴对应的两根火柴在各列 ...

  3. 【洛谷P1966】火柴排队

    火柴排队 题目链接 ∑(ai​−bi​)^2=∑ai^2-2*∑ai*bi+∑bi^2 显然∑ai^2+∑bi^2是不变的,我们要让 2*∑ai*bi最大,才能使原式最小 然后我们一眼就可以看出来, ...

  4. 洛谷 P3374 【模板】树状数组 1 题解

    P3374 [模板]树状数组 1 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某一个数加上x 2.求出某区间每一个数的和 输入格式 第一行包含两个整数N.M,分别表示该数列数字的个数 ...

  5. 洛谷 P3368 【模板】树状数组 2 题解

    P3368 [模板]树状数组 2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数数加上x 2.求出某一个数的值 输入格式 第一行包含两个整数N.M,分别表示该数列数字的个 ...

  6. 洛谷 P3374 【模板】树状数组 1 & P3368 【模板】树状数组 2 题解

    一维树状数组的作用主要是单点修改,单点查询,区间修改,区间查询. 模板1是单点修改,区间查询:模板2是单点查询,区间修改. 模板1: #include<iostream> #include ...

  7. 洛谷P3374 【模板】树状数组 1&&P3368 【模板】树状数组 2题解

    图片来自度娘~~ 树状数组形如上图,是一种快速查找区间和,快速修改的一种数据结构,一个查询和修改复杂度都为log(n),树状数组1和树状数组2都是板子题,在这里进行详解: 求和: 首先我们看一看这个图 ...

  8. Codevs 3286 火柴排队 2013年NOIP全国联赛提高组 树状数组,逆序对

    题目:http://codevs.cn/problem/3286/ 3286 火柴排队  2013年NOIP全国联赛提高组  时间限制: 1 s   空间限制: 128000 KB   题目等级 : ...

  9. 洛谷P3688/uoj#291. [ZJOI2017]树状数组

    传送门(uoj) 传送门(洛谷) 这里是题解以及我的卡常数历程 话说后面那几组数据莫不是lxl出的这么毒 首先不难发现这个东西把查询前缀和变成了查询后缀和,结果就是查了\([l-1,r-1]\)的区间 ...

随机推荐

  1. 从BASE理论到CAP理论

    BASE理论面向的是大型高可用可扩展的分布式系统,和传统事务的CID特性是相反的,它完全不同于ACID的强一致性模型,而是提出通过牺牲强一致性来获得可用性,并允许数据在一段时间内是不一致的,但最终达到 ...

  2. Angular中引入Bootstrap部分样式失效以及Jquery的$无法识别

    大多数同学在模仿慕课网的时候可能会遇到引入bootstrap和jquery样式部分失效以及$符号报错,这里为大家提供正确的解决方案. 可能大家在引入试过col-md之后觉得bootstrap是ok的, ...

  3. python Tensorflow 实现图像的卷积处理

    1.convolution.py import numpy as np from sklearn.datasets import load_sample_images import tensorflo ...

  4. 在 Ubuntu上使用 MySQL

    MySQL 安装配置 https://help.ubuntu.com/12.04/serverguide/mysql.html MySQL Manual http://dev.mysql.com/do ...

  5. BZOJ2229: [Zjoi2011]最小割(最小割树)

    传送门 最小割树 算法 初始时把所有点放在一个集合 从中任选两个点出来跑原图中的最小割 然后按照 \(s\) 集合与 \(t\) 集合的归属把当前集合划分成两个集合,递归处理 这样一共跑了 \(n − ...

  6. bootstrap Table的使用方法

    1.官网 url:http://bootstrap-table.wenzhixin.net.cn/zh-cn/documentation/ 文档包含了表格属性.列属性.事件.方法等等. 2.引入库 只 ...

  7. 利用PHP QR Code生成二维码(带logo)

    转自:http://www.cnblogs.com/txw1958/p/phpqrcode.html HP QR Code是一个PHP二维码生成类库,利用它可以轻松生成二维码,官网提供了下载和多个演示 ...

  8. Install Java JDK JRE on Ubuntu/Debian with Apt-Get

    Introduction As a lot of articles and programs require to have Java installed, this article will gui ...

  9. 媒体查询hack

    随着Responsive设计的流行,Medial Queries可算是越来越让人观注了.他可以让Web前端工程实现不同设备下的样式选择,让站点在不同的设备中实现不同的效果.这个早前在 w3cplus已 ...

  10. 3 使用selenium模拟登录csdn

    之前通过F12开发者模式调试,获取网站后台服务器验证用户名和密码的URL之后,再构造post数据的方式会存在一个问题,就是对目标网站的验证机制不明确,构造post数据除了用户名和密码之外,还可能有更复 ...