洛谷 P2057 善意的投票(网络流最小割)
P2057 善意的投票
题目描述
幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉。对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神。虽然每个人都有自己的主见,但是为了照顾一下自己朋友的想法,他们也可以投和自己本来意愿相反的票。我们定义一次投票的冲突数为好朋友之间发生冲突的总数加上和所有和自己本来意愿发生冲突的人数。
我们的问题就是,每位小朋友应该怎样投票,才能使冲突数最小?
输入输出格式
输入格式:
文件的第一行只有两个整数n,m,保证有2≤n≤300,1≤m≤n(n-1)/2。其中n代表总人数,m代表好朋友的对数。文件第二行有n个整数,第i个整数代表第i个小朋友的意愿,当它为1时表示同意睡觉,当它为0时表示反对睡觉。接下来文件还有m行,每行有两个整数i,j。表示i,j是一对好朋友,我们保证任何两对i,j不会重复。
输出格式:
只需要输出一个整数,即可能的最小冲突数。
输入输出样例
3 3
1 0 0
1 2
1 3
3 2
1
说明
2≤n≤300,1≤m≤n(n-1)/2。
Solution:
题意大致就是有n个人有两种不同的意见并且有许多朋友,需要让朋友间尽可能的统一意见(少发生冲突),如果一个人违反自己的本意也算冲突,求最少的冲突。。。明眼人直接发现是最小割,两种意见可以看作源点S和T,我们需要做的是割最少的边使得S和T成为两个不同的集合,解释:割掉的边相当于1次冲突(因为若某边被割走,则显然这条边相连的两个点分别通向了S和T,所以算是一次冲突),当S和T还连通时则必然存在一条路径,这样肯定会有冲突,所以需要使得S和T孤立。
实现时这样建图:直接将S连向同意的人,T连向不同意的人,若两人是朋友,则在他们之间连一条双向边(这里有些人不理解,若两个人有冲突,则只需要其中任意一个人改变意见就行了,简单说可能是a同意b的意见或者b同意a的意见,只需割掉一条边,但是有两种情况,所以建双向边)。
最后就是求最小割了,直接套上最大流的模板就ok了。
// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define il inline
using namespace std;
const int N=,inf=;
int n,m,s,t=,h[N],cnt=,dis[N],ans;
struct edge{
int to,net,v;
}e[N*];
il void add(int u,int v,int w)
{
e[++cnt].to=v,e[cnt].net=h[u],e[cnt].v=w,h[u]=cnt;
e[++cnt].to=u,e[cnt].net=h[v],e[cnt].v=,h[v]=cnt;
}
queue<int>q;
il bool bfs()
{
memset(dis,-,sizeof(dis));
q.push(s),dis[s]=;
while(!q.empty())
{
int u=q.front();q.pop();
for(int i=h[u];i;i=e[i].net)
if(dis[e[i].to]==-&&e[i].v>)dis[e[i].to]=dis[u]+,q.push(e[i].to);
}
return dis[t]!=-;
}
il int dfs(int u,int op)
{
if(u==t)return op;
int flow=,used=;
for(int i=h[u];i;i=e[i].net)
{
int v=e[i].to;
if(dis[v]==dis[u]+&&e[i].v>)
{
used=dfs(v,min(op,e[i].v));
if(!used)continue;
flow+=used,op-=used;
e[i].v-=used,e[i^].v+=used;
if(!op)break;
}
}
if(!flow)dis[u]=-;
return flow;
}
int main()
{
scanf("%d%d",&n,&m);
int x,y;
for(int i=;i<=n;i++){
scanf("%d",&x);
if(x==)add(s,i,);
else add(i,t,);
}
for(int i=;i<=m;i++){
scanf("%d%d",&x,&y);
add(x,y,),add(y,x,);
}
while(bfs())ans+=dfs(s,inf);
cout<<ans;
return ;
}
洛谷 P2057 善意的投票(网络流最小割)的更多相关文章
- 洛谷P2057 善意的投票
题目描述 幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉.对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神.虽然每个人都有自己的主见,但是为了照顾一下自己朋友的想法,他们也可以投和自己本来 ...
- 【Luogu】P2057善意的投票(最小割转最大流)
题目链接 也算水题一道吧,不过Round1感性理解一下就xjb建了个图,40 Round2仔细分析了一会,理性建了个图,90 然后分析了半天……改大数组就A了…… 从S到所有值为1的点连一条inf的边 ...
- 【洛谷2057】 [SHOI2007]善意的投票(最小割)
传送门 洛谷 Solution 比较巧妙啊! 考虑这个只有同意和不统一两种,所以直接令\(s\)表示选,\(t\)表示不选,然后在朋友直接建双向边就好了. 代码实现 #include<bits/ ...
- BZOJ 1934洛谷2057善意的投票题解
题目链接 BZ链接 又是一道玄学的网络流题 我们这样建图: 对于同意观点1的原点向其连边,对于同一观点2点向汇点连边 然后如果两个人是朋友,就连一条双向边. 为什么这样是对的呢? 对于一个人来说,他要 ...
- 1934. [SHOI2007]善意的投票【最小割】
Description 幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉.对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神.虽然每个人都有自己的主见,但是为了照顾一下自己朋友的想法,他们也可 ...
- 「SHOI2007」「Codevs2341」 善意的投票(最小割
2341 善意的投票 2007年省队选拔赛上海市队选拔赛 时间限制: 5 s 空间限制: 128000 KB 题目等级 : 大师 Master 题目描述 Description 幼儿园里有n个小朋 ...
- [bzoj1934/2768][Shoi2007]Vote 善意的投票_最小割
Vote 善意的投票 bzoj-1934 Shoi-2007 题目大意:题目链接. 注释:略. 想法: 这是最小割的一个比较基本的模型. 我们将所有当前同意的小朋友连向源点,边权为1.不容易的连向汇点 ...
- bzoj1934: [Shoi2007]Vote 善意的投票(显然最小割)
1934: [Shoi2007]Vote 善意的投票 题目:传送门 题解: 明显的不能再明显的最小割... st连同意的,不同意的连ed 朋友之间两两连边(即双向边) 流量都为1... 为啥: 一个人 ...
- 【洛谷P3973】[TJOI2015]线性代数(最小割)
洛谷 题意: 给出一个\(n*n\)的矩阵\(B\),再给出一个\(1*n\)的矩阵\(C\). 求一个\(1*n\)的\(01\)矩阵\(A\),使得\(D=(A\cdot B-C)\cdot A^ ...
随机推荐
- [POJ2104]Kth Number-[整体二分]
Description 传送门 Solution 将所有询问放在一起,二分答案的同时把区间[l,r]内的数按大小分类. Code #include<iostream> #include&l ...
- SaltStack入门篇(五)之salt-ssh的使用以及LAMP状态设计部署
1.salt-ssh的使用 官方文档:https://docs.saltstack.com/en/2016.11/topics/ssh/index.html ()安装salt-ssh [root@li ...
- python 布尔值 bool( ) 与逻辑运算符
逻辑运算符 not and or 运算符优先级 not > and >or printer(x or y) x为非零,则返回x,否则返回y print(1 or 2) print(3 o ...
- abp 指定方法不生成api
方法上面添加RemoteServiceAttribute特性
- [SHELL]查看端口,文件,服务关系的四个命令netstat,lsof,fuser,nmap
一,netstat (1)简介 netstat主要是用来打印系统网络的状态信息,当输入netstat后,输出如下: 可以看出,netstat的输出分为两个部分组成: 一个是Active Interne ...
- 亮眼的购物季数据,高涨的 Amazon Prime
依照往年的惯例,亚马逊公布了 2013 购物季的销售数据.据 The Verge 的报道,今年,仅仅网购星期一(Cyber Monday)一天就在全球范围内销售出 3680 万件商品,而去年这一数字为 ...
- curl常用用法
-v显示请求详细信息 curl www.baidu.com -v -X 指定请求方式 GET请求 curl -X GET http://localhost:8080/search?data=123 # ...
- TCP半开连接与半闭连接
半打开(Half-Open)连接和半关闭(Half-Close)连接.TCP是一个全双工(Full-Duplex)协议,因此这里的半连接"半"字就是相对于全双工的"全&q ...
- dtd文件本地配置
在struts包解压出来以后的地方找
- DCOM初步窥探二
1.COM进程透明性表现在“组件对象和客户程序可以拥有各自的空间,也可以共享同一个进程空间”. COM负责把客户的调用正确传到组件对象中,并保证参数传递的正确性. 组件对象和客户代码不必考虑调用传递的 ...