HIVE小结

HIVE基本语法

HIVE和Mysql十分类似

建表规则

  CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name
[(col_name data_type [COMMENT col_comment], ...)]
[COMMENT table_comment]
[PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]
[CLUSTERED BY (col_name, col_name, ...)
[SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS]
[ROW FORMAT row_format]
[STORED AS file_format]
[LOCATION hdfs_path]
  1. CREATE TABLE 创建一个指定名字的表。如果相同名字的表已经存在,则抛出异常;用户可以用 IF NOT EXIST 选项来忽略这个异常

  2. EXTERNAL 关键字可以让用户创建一个外部表,在建表的同时指定一个指向实际数据的路径(LOCATION)

  3. LIKE 允许用户复制现有的表结构,但是不复制数据

  4. COMMENT可以为表与字段增加描述

创建表

hive> CREATE TABLE IF NOT EXISTS test1

> (id INT,name STRING);

删除表

drop table test1;

查看表结构

desc test1;

修改表名

alter table test1 rename to test2;

修改表结构

alter table test1 add columns(address string ,grade string);

创建和已知表相同结构的表

create table test3 like test1;

加载本地数据

load date local inpath '/home/date/' into table test1;

注意可以在into 前面添加overwrite表示覆盖之前在test1的数据,如果没有就表示加载本地数据在原始数据的后面

加载hdfs的文件

首先将文件上传到hdfs文件系统对对应的目录上

hadoop fs -put /home/
.txt /usr/**

然后加载hdfs中的数据

load data inpath /usr/** into table test1;

插入数据

insert overwrite table test2 select * from test1;

查询数据

和mysql语法上没甚没区别

  1. 查询单个字段的数据
  2. where条件查询
  3. all和distinct
  4. limit限制查询
  5. group by
  6. order by
  7. sort bu
  8. distribute by
  9. cluster by

HIVE分区

hive分区是为了更方便数据管理,常见的有时间分区和业分区

	create table t1(
id int
,name string
,hobby array<string>
,add map<String,string>
)
partitioned by (pt_d string)

需要注意的是分区字段不能和表中的字段重复,否则就会报错:

	FAILED: SemanticException [Error 10035]: Column repeated in partitioning columns

我们在加载数据的时候也可以分区加载

load data local inpath '/home/hadoop/Desktop/data' overwrite into table t1 partition ( pt_d = '201701');

之后我们再将同一份数据加载到不同的分区中

load data local inpath '/home/hadoop/Desktop/data' overwrite into table t1 partition ( pt_d = '000000');

查询一下数据 select * from t1;

1   xiaoming    ["book","TV","code"]    {"beijing":"chaoyang","shagnhai":"pudong"}  000000
2 lilei ["book","code"] {"nanjing":"jiangning","taiwan":"taibei"} 000000
3 lihua ["music","book"] {"heilongjiang":"haerbin"} 000000
1 xiaoming ["book","TV","code"] {"beijing":"chaoyang","shagnhai":"pudong"} 201701
2 lilei ["book","code"] {"nanjing":"jiangning","taiwan":"taibei"} 201701
3 lihua ["music","book"] {"heilongjiang":"haerbin"} 201701

创建分区除了在创建表的时候启动partition by实现,还可以

alter table t1 add partition (pt_d string)

这样就创建了一个分区,这时会看到hive在hdfs中创建了相应的文件夹

查询相应的分区的数据

select * from t1 where pt_d = ‘000000’

添加分区,增加一个分区文件

alter table t1 add partition (pt_d = ‘333333’);

删除分区(删除对应的分区文件)

注意,对于外表进行drop partition并不会删除hdfs上的文件,并且通过msck repair table table_name同步回hdfs上的分区。

alter table test1 drop partition (pt_d = ‘20170101’);

查询分区

show partitions table_name;

修复分区

修复分区就是重新同步hdfs上的分区信息。

msck repair table table_name;

插入数据

insert overwrite table partition_test partition(stat_date='2015-01-18',province='jiangsu')
select member_id,name from partition_test_input
where stat_date='2015-01-18'
and province='jiangsu';

内部表和外部表的区别

Hive中表与外部表的区别:

1、在导入数据到外部表,数据并没有移动到自己的数据仓库目录下,也就是说外部表中的数据并不是由它自己来管理的!而表则不一样;

2、在删除表的时候,Hive将会把属于表的元数据和数据全部删掉;而删除外部表的时候,Hive仅仅删除外部表的元数据,数据是不会删除的!

那么,应该如何选择使用哪种表呢?在大多数情况没有太多的区别,因此选择只是个人喜好的问题。但是作为一个经验,如果所有处理都需要由Hive完成,那么你应该创建表,否则使用外部表!

HIVE基本语法以及HIVE分区的更多相关文章

  1. Hive基本语法操练

    建表规则如下: CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name [(col_name data_type [COMMENT col_comment ...

  2. Hadoop Hive sql语法详解

    Hadoop Hive sql语法详解 Hive 是基于Hadoop 构建的一套数据仓库分析系统,它提供了丰富的SQL查询方式来分析存储在Hadoop 分布式文件系统中的数据,可以将结构 化的数据文件 ...

  3. 一脸懵逼学习Hive的使用以及常用语法(Hive语法即Hql语法)

    Hive官网(HQL)语法手册(英文版):https://cwiki.apache.org/confluence/display/Hive/LanguageManual Hive的数据存储 1.Hiv ...

  4. 【Hive学习之五】Hive 参数&动态分区&分桶

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 hadoop-3.1.1 apache-hive-3.1.1 ...

  5. Hive SQL 语法学习与实践

    Hive 介绍 Hive 是基于Hadoop 构建的一套数据仓库分析系统,它提供了丰富的SQL查询方式来分析存储在Hadoop 分布式文件系统中的数据,可以将结构化的数据文件映射为一张数据库表,并提供 ...

  6. Hive SQL语法总结

    Hive是一个数据仓库基础的应用工具,在Hadoop中用来处理结构化数据,它架构在Hadoop之上,通过SQL来对数据进行操作. Hive 查询操作过程严格遵守Hadoop MapReduce 的作业 ...

  7. Hadoop Hive概念学习系列之hive里的分区(九)

    为了对表进行合理的管理以及提高查询效率,Hive可以将表组织成“分区”. 分区是表的部分列的集合,可以为频繁使用的数据建立分区,这样查找分区中的数据时就不需要扫描全表,这对于提高查找效率很有帮助. 分 ...

  8. Hive 基本语法操练(六):Hive 的权限控制

    Hive 的权限控制 Hive从0.10可以通过元数据控制权限.但是Hive的权限控制并不是完全安全的.基本的授权方案的目的是防止用户不小心做了不合适的事情. 为了使用Hive的授权机制,有两个参数必 ...

  9. Hive 基本语法操练(五):Hive 的 JOIN 用法

    Hive 的 JOIN 用法 hive只支持等连接,外连接,左半连接.hive不支持非相等的join条件(通过其他方式实现,如left outer join),因为它很难在map/reduce中实现这 ...

随机推荐

  1. 使用 Azure CLI 在 Azure China Cloud 云平台上手动部署一套 Cloud Foundry

    这篇文章将介绍如何使用 Azure CLI 在 Azure China Cloud 云平台上手动部署一套 Cloud Foundry.本文的目的在于: 了解作为 PaaS 的 Cloud Foundr ...

  2. 关于v$rowcache

    关于v$rowcache column parameter format a21column pct_succ_gets format 999.9column updates format 999,9 ...

  3. Git小抄

    生存必备 分支 忽略已提交的文件 版本回退 撤销修改 删除文件 修改最后一次提交的说明信息 tag 生存必备 git init git add <file1> <file2> ...

  4. Emacs快捷键(较全)

    C = Control M = Meta = Alt | Esc Del = Backspace 基本快捷键(Basic) C-x C-f "find"文件, 即在缓冲区打开/新建 ...

  5. ASP.NET Core 编码、web编码、网页编码 System.Text.Encodings.Web

    System.Text.Encodings.Web 空间包含表示 Web 编码器的基类.表示 HTML.JavaScript 和 Url 字符编码的子类,以及表示仅允许编码特定字符.字符范围或码位的筛 ...

  6. 软件cs页面分辨率测试

    1.为什么软件要进行分辨率兼容性测试 用户的环境可能大多数是主流的分辨率,如1024x768,1366x700,但是我们还是遇到了一些使用上网本的用户,他的上网本分辨率是1024x600,由于我们的软 ...

  7. python strip()

    函数原型 声明:s为字符串,rm为要删除的字符序列 s.strip(rm)        删除s字符串中开头.结尾处,位于 rm删除序列的字符 s.lstrip(rm)       删除s字符串中开头 ...

  8. POJ1039 Pipe

    嘟嘟嘟 大致题意:按顺序给出\(n\)个拐点表示一个管道,注意这些点是管道的上端点,下端点是对应的\((x_i, y_i - 1)\).从管道口射进一束光,问能达到最远的位置的横坐标.若穿过管道,输出 ...

  9. mysql服务器参数

    mysql服务器参数: 配置是从上往下读取,同一个参数项,后边的配置项会覆盖前边的配置项 mysql获取配置信息路径: 命令行参数    mysqld_safe  --datadir=/data/sq ...

  10. php编译安装报错

    Cannot find OpenSSL's <evp.h> 解决方法: 下载openssl-1.1.0h.tar  包 [root@localhost ~]# cd openssl-1.1 ...