【BZOJ3470】Freda’s Walk 概率与期望
【BZOJ3470】Freda’s Walk
Description
雨后的Poetic Island空气格外清新,于是Freda和Rainbow出来散步。 Poetic Island的交通可以看作一张n个点、m 边的有向无环图。由于刚下过雨,每条边都有一个积水深度,而恰好Freda 和Rainbow都喜欢踩水玩儿,于是Ta们从某个点出发,选择走向哪条边的概率与该边的积水深度是成正比的。即:如果Freda和Rainbow现在在点u,点u 出发的所有边的积水深度之和为s,从u到v的边积水深度为w,那么Ta们选择走向v的概率就是 w/s。
Ta们会一直走下去,直到到达一个没有出边的点,那么散步的路程长度就是走过的边的数量。更特殊的是,Freda和Rainbow在出发之前还可以选择一条边,在散步过程中无视这条边的存在(当然也可以不选择)。请你帮忙计算一下,Ta 们从0号点出发,散步的路程长度的期望值最大是多少?
Input
第一行两个正整数 n、m。
接下来m行每行三个整数u、v、w,表示从u到v有一条无向边,积水深度为w。
Output
输出Freda和Rainbow散步的路程长度的最大期望值,四舍五入保留六位小数。
Sample Input
0 1 2
0 2 1
0 3 3
1 3 1
2 3 4
Sample Output
HINT
对于 100% 的数据,2<=n<=10000,1<=m<=100000,0<=u,v<n,1<=w<=1000。
题解:由于是DAG,所以我们先反着跑拓扑排序,求出从每个点开始走的期望步数f[i],再正着跑拓扑排序,求出从0号点走到这个点的概率p[i]。
然后枚举删除那条边<a,b>。首先删除这条边会使答案减去p[a]*(f[b]+1),其次a的其他出边的概率都会增加。算一下贡献即可。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
using namespace std;
const int maxn=10010;
const int maxm=100010;
int n,m,cnt;
int to[maxm],next[maxm],val[maxm],head[maxn],d[maxn],s[maxn],pa[maxm],pb[maxm],pc[maxm];
double ans;
double p[maxn],f[maxn];
queue<int> q;
inline void add(int a,int b,int c)
{
to[cnt]=b,val[cnt]=c,next[cnt]=head[a],head[a]=cnt++;
}
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+(gc^'0'),gc=getchar();
return ret*f;
}
int main()
{
n=rd(),m=rd();
int i,u,a,b,c;
memset(head,-1,sizeof(head)),cnt=0;
for(i=1;i<=m;i++) a=pa[i]=rd()+1,b=pb[i]=rd()+1,c=pc[i]=rd(),add(b,a,c),s[a]+=c,d[a]++;
for(i=1;i<=n;i++) if(!d[i]) q.push(i);
while(!q.empty())
{
u=q.front(),q.pop();
for(i=head[u];i!=-1;i=next[i])
{
d[to[i]]--,f[to[i]]+=(f[u]+1)*val[i]/s[to[i]];
if(!d[to[i]]) q.push(to[i]);
}
}
memset(head,-1,sizeof(head)),cnt=0;
for(i=1;i<=m;i++) add(pa[i],pb[i],pc[i]),d[pb[i]]++;
p[1]=1;
for(i=1;i<=n;i++) if(!d[i]) q.push(i);
while(!q.empty())
{
u=q.front(),q.pop();
for(i=head[u];i!=-1;i=next[i])
{
d[to[i]]--,p[to[i]]+=p[u]*val[i]/s[u];
if(!d[to[i]]) q.push(to[i]);
}
}
ans=f[1];
for(i=1;i<=m;i++)
{
a=pa[i],b=pb[i],c=pc[i];
double g=(f[a]-(f[b]+1)*c/s[a])*s[a]/(s[a]-c)-f[a];
ans=max(ans,f[1]+g*p[a]);
}
printf("%.6lf",ans);
return 0;
}
【BZOJ3470】Freda’s Walk 概率与期望的更多相关文章
- [BZOJ3470]Freda’s Walk
bzoj description 雨后的Poetic Island空气格外清新,于是Freda和Rainbow出来散步. Poetic Island的交通可以看作一张\(n\)个点.\(m\)边的有向 ...
- 【BZOJ 3470】3470: Freda’s Walk 期望
3470: Freda’s Walk Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 42 Solved: 22 Description 雨后的Poet ...
- 【BZOJ-3450】Tyvj1952Easy 概率与期望DP
3450: Tyvj1952 Easy Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 468 Solved: 353[Submit][Status] ...
- 【BZOJ-4008】亚瑟王 概率与期望 + DP
4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec Memory Limit: 512 MBSec Special JudgeSubmit: 832 Solved: 5 ...
- BZOJ_4872_[Shoi2017]分手是祝愿_概率与期望
BZOJ_4872_[Shoi2017]分手是祝愿_概率与期望 Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这 ...
- 概率和期望dp
概率和期望dp 概率和期望好神啊,完全不会. 网上说概率要顺着推,期望要逆着推,然而我目前做的概率期望题正好都与此相反2333 概率: 关于概率:他非常健康 初中概率题非常恐怖.现在来思考一道题: ...
- 【CodeForces】913 F. Strongly Connected Tournament 概率和期望DP
[题目]F. Strongly Connected Tournament [题意]给定n个点(游戏者),每轮游戏进行下列操作: 1.每对游戏者i和j(i<j)进行一场游戏,有p的概率i赢j(反之 ...
- 概率dp+期望dp 题目列表(一)
表示对概率和期望还不是很清楚定义. 目前暂时只知道概率正推,期望逆推,然后概率*某个数值=期望. 为什么期望是逆推的,例如你求到某一个点的概率我们可以求得,然后我们只要运用dp从1~n每次都加下去就好 ...
- HDU 5159 Card (概率求期望)
B - Card Time Limit:5000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Sta ...
随机推荐
- iOS彩票项目--第四天,新特性界面搭建,UICollectionViewController的初次使用
一.新特性界面搭建的思路: 在AppDelegate加载主窗体的时候进行判断程序版本号,直接进入程序或者进入新特性展示界面 取出当前的版本号,与旧的版本号相比较(旧的版本号在进入程序的时候存起来 =& ...
- iOS基础--UIView的常见属性
UIView的常见属性以及方法 @property(nonatomic,readonly) UIView *superview; // 获得自己的父控件对象 @property(nonatomic,r ...
- js类型转换 之 转字符串及布尔类型
上一篇我们讲到了如何转数字类型,今天总结一下转字符串及布尔类型的方法: 转字符串方法主要有: toString(); String(); 具体的用法如下表格所示: 方法 例子 返回值 说明 toStr ...
- HTML坦克大战学习02---坦克动起来
<!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <t ...
- 自然语言交流系统 phxnet团队 创新实训 项目博客 (一)
2D文字聊天界面大致预期实现文字输入.发送消息.接收消息.你可以通过点击按钮让机器人开启聊天模式或者学习模式.又或是进入3D语音聊天界面或者退出. 目背景 (1) 开发动机的形态 随着科技的进步与生活 ...
- 关于Cocos2d-x中GameController的定义
GameController类是继承自Scheduler(有计时功能)或者Ref(可自动释放)的用户自己定义的一个控制器 如果一个场景有多个层的话,要用GameController,一个GameCon ...
- imx6 uart分析
本文主要记录: 1.uart设备注册 2.uart驱动注册 3.上层应用调用有些地方理解的还不是很透彻,希望指正. 1.uart设备注册过程 MACHINE_START(MX6Q_SABRESD, & ...
- e645. 处理键盘事件
You can get the key that was pressed either as a key character (which is a Unicode character) or as ...
- websocke前世今生
注:以下内容来自网上.本人经过加工整理. 1.问什么要用websocke? Browser已经支持http协议,为什么还要开发一种新的WebSocket协议呢?我们知道http协议是一种单向的网络协议 ...
- jquery轻量级富文本编辑器Trumbowyg
html: <!DOCTYPE html> <html lang="zh-cn"> <head> <meta http-equiv=&qu ...