HDU 5289 Assignment(多校2015 RMQ 单调(双端)队列)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5289
ability of any two staff is less than k, and their numbers are continuous. Tom want to know the number of groups like this.
than k. The second line contains n integers:a[1],a[2],…,a[n](0<=a[i]<=10^9),indicate the i-th staff’s ability.
2
4 2
3 1 2 4
10 5
0 3 4 5 2 1 6 7 8 9
5
28HintFirst Sample, the satisfied groups include:[1,1]、[2,2]、[3,3]、[4,4] 、[2,3]
题意:
给出一个整数序列,求有多少个区间满足区间里的最大元素与最小元素的差不超过k”。
PS:
1:能够先用Rmq处理出区间的最值,再枚举区间。当然一味的枚举肯定没有以下两种方法快!
2:用单调(双端)队列维护区间最值
3:枚举左端点,二分右端点,用ST算法求区间最值
代码一例如以下:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <iostream>
using namespace std;
const int MAXN = 100117; int num[MAXN]; int F_Min[MAXN][30],F_Max[MAXN][30]; void Init(int n)
{
for(int i = 1; i <= n; i++)
{
F_Min[i][0] = F_Max[i][0] = num[i];
} for(int i = 1; (1<<i) <= n; i++) //按区间长度递增顺序递推
{
for(int j = 1; j+(1<<i)-1 <= n; j++) //区间起点
{
F_Max[j][i] = max(F_Max[j][i-1],F_Max[j+(1<<(i-1))][i-1]);
F_Min[j][i] = min(F_Min[j][i-1],F_Min[j+(1<<(i-1))][i-1]);
}
}
} int Query_max(int l,int r)
{
int k = (int)(log(double(r-l+1))/log((double)2));
return max(F_Max[l][k], F_Max[r-(1<<k)+1][k]);
} int Query_min(int l,int r)
{
int k = (int)(log(double(r-l+1))/log((double)2));
return min(F_Min[l][k], F_Min[r-(1<<k)+1][k]);
}
int solve(int l, int r)
{
return Query_max(l,r)-Query_min(l,r);
}
int main()
{
int t;
int n, k;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&k);
for(int i = 1; i <= n; i++)
{
scanf("%d",&num[i]);
}
Init(n);
__int64 ans = 0;
int pos = 1;
for(int i = 1; i <= n; i++)
{
while(solve(pos, i) >= k && pos < i)
{
pos++;
}
ans+=i-pos+1;
}
printf("%I64d\n",ans);
}
return 0;
}
代码二例如以下:http://www.bubuko.com/infodetail-987302.html
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std ;
#define LL __int64
deque <LL> deq1 , deq2 ;
//单调队列,deq1最大值,deq2最小值
LL a[100010] ;
int main()
{
int t , n , i , j ;
LL k , ans ;
scanf("%d", &t) ;
while( t-- )
{
scanf("%d %I64d", &n, &k) ;
for(i = 0 ; i < n ; i++)
scanf("%I64d", &a[i]) ;
if(k == 0)
{
printf("0\n") ;
continue ;
}
while( !deq1.empty() ) deq1.pop_back() ;
while( !deq2.empty() ) deq2.pop_back() ;
for(i = 0 , j = 0 , ans = 0; i < n ; i++) //i在前,j在后
{
while( !deq1.empty() && deq1.back() < a[i] ) deq1.pop_back() ;
deq1.push_back(a[i]) ;
while( !deq2.empty() && deq2.back() > a[i] ) deq2.pop_back() ;
deq2.push_back(a[i]) ;
while( !deq1.empty() && !deq2.empty() && deq1.front() - deq2.front() >= k )
{
ans += (i-j) ;
//printf("%d %d,%I64d %I64d\n", i , j, deq1.front() , deq2.front() ) ;
if( deq1.front() == a[j] ) deq1.pop_front() ;
if( deq2.front() == a[j] ) deq2.pop_front() ;
j++ ;
}
}
while( j < n )
{
ans += (i-j) ;
j++ ;
}
printf("%I64d\n", ans) ;
}
return 0 ;
}
代码三例如以下:http://www.bubuko.com/infodetail-987919.html
#include<cstdio>
#include<cstring>
#include<cmath>
#define LL long long
#define Max(a,b) ((a)>(b)? (a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std; const int N=200007;
int minn[N][20];//2^18=262144 2^20=1048576
int maxx[N][20]; //----------------------查询O(1)-------------
int queryMin(int l,int r)
{
int k=floor(log2((double)(r-l+1)));//2^k <= (r - l + 1),floor()向下取整函数
return Min(minn[l][k],minn[r-(1<<k)+1][k]);
} int queryMax(int l,int r)
{
int k=floor(log2((double)(r-l+1)));
return Max(maxx[l][k],maxx[r-(1<<k)+1][k]);
}
//------------------------------------------------- int calc(int l,int r)
{
int k=log2((double)(r-l+1));
int MAX=Max(maxx[l][k],maxx[r-(1<<k)+1][k]);
int MIN=Min(minn[l][k],minn[r-(1<<k)+1][k]);
return MAX-MIN;
} int main()
{
int T;
int n,k,i,j,p;
LL ans;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&k);
for(i=1; i<=n; ++i)
{
scanf("%d",&j);
minn[i][0]=maxx[i][0]=j;
}
//------------------------------------------预处理O(nlogn)---------------
for(j=1; (1<<j)<=n; ++j)//1<<j==2^j,枚举区间长度1,2,4,8。16。,。。,
for(i=1; i+(1<<j)-1<=n; ++i)//i+(1<<j)-1表示区间右边界,枚举区间左边界
{
p=(1<<(j-1));
minn[i][j]=Min(minn[i][j-1],minn[i+p][j-1]);
maxx[i][j]=Max(maxx[i][j-1],maxx[i+p][j-1]);
}
//----------------------------------------------------------------------- //---------------------------枚举左端点,二分右端点--------------------------- int l,r,mid;
ans=0;
//左端点固定为i,右端点用l,r,mid去确定,最后用l和r中的当中一个,此时l+1==r
for(i=1; i<=n; ++i)
{
l=i,r=n;
while(l+1<r)
{
mid=(l+r)>>1;//(l+r)/2==(l+r)>>1
if(calc(i,mid)<k)
{
l=mid;
}
else
{
r=mid-1;//自己去演示算法流程就知道r能够赋值mid-1
}
}
if(calc(i,r)<k)
{
ans=ans+(LL)(r-i+1);
}
else
{
ans=ans+(LL)(l-i+1);
}
}
//---------------------------------------------------------------------------
printf("%lld\n",ans);
}
return 0;
}
HDU 5289 Assignment(多校2015 RMQ 单调(双端)队列)的更多相关文章
- Vijos1834 NOI2005 瑰丽华尔兹 动态规划 单调双端队列优化
设dp[t][x][y]表示处理完前t个时间段,钢琴停留在(x,y)处,最多可以走多少个格子 转移时只需逆着当前倾斜的方向统计len个格子(len为时间区间的长度,len=t-s+1),如果遇到障碍就 ...
- HDU 6319 Ascending Rating (单调双端队列)
题意:给定一个序列a[1..n],对于每个长度为m的连续子区间,求出区间的最大值和从左往右扫描该区间最大值的变化次数. 分析:先O(n)处理出整个序列的值.求出每个长度为m的连续区间中的最大值可以用单 ...
- HDU - 5289 Assignment (RMQ+二分)(单调队列)
题目链接: Assignment 题意: 给出一个数列,问其中存在多少连续子序列,使得子序列的最大值-最小值<k. 题解: RMQ先处理出每个区间的最大值和最小值(复杂度为:n×logn),相 ...
- HDU 5289 Assignment [优先队列 贪心]
HDU 5289 - Assignment http://acm.hdu.edu.cn/showproblem.php?pid=5289 Tom owns a company and he is th ...
- 双端队列(单调队列)poj2823 区间最小值(RMQ也可以)
Sliding Window Time Limit: 12000MS Memory Limit: 65536K Total Submissions: 41844 Accepted: 12384 ...
- STL-Deque(双端队列)与单调队列的实现
前言: STl是个好东西,虽然他在不开O2的条件下会跑的很慢,但他着实会让你的代码可读性大大提高,令你的代码看起来既简单又整洁. 双端队列: 顾名思义,双端队列是有两个头的,一个队首指针,一个队尾指针 ...
- 22.1.23Manacher算法、双端队列、单调栈
22.1.23Manacher算法.双端队列.单调栈 1.Manacher算法 1)用途: Manacher算法用于解决类似求某个字符串中最长的回文子串.(回文就是正着读和倒着读一样的结构). 2)算 ...
- 二分+RMQ/双端队列/尺取法 HDOJ 5289 Assignment
题目传送门 /* 题意:问有几个区间最大值-最小值 < k 解法1:枚举左端点,二分右端点,用RMQ(或树状数组)求区间最值,O(nlog(n))复杂度 解法2:用单调队列维护最值,O(n)复杂 ...
- HDU 5289 Assignment(二分+RMQ-ST)
Assignment Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total ...
随机推荐
- tensorflow的警告
W c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\platform\cpu_featur ...
- Android开发学习之数据存取
Android系统中提供了一种文件读写的方法,可以将一些数据以文件的形式保存在设备中.比如一些word文档,PDF文档,图片,音频,视频文件等. 使用文件读写方法的步骤: 1.调用Context.op ...
- Python学习笔记020——数据库基本操作
本数据库的操作是Linux虚拟机平台下进行的 1 启动和链接MySQL服务 1.1 服务端 (1)查看服务状态 sudo /etc/init.d/mysql stauts (2)启动服务端 sudo ...
- 使用xshell远程登录ubuntu使用vi编辑不能使用删除键方向键
近期安装了xshell,远程登录上ubuntu后,在插入模式下,按删除键没有任何反应,按方向键分别打印出A.B.C.D,每个字符一行. 这是因为ubuntu初始化安装的是vi的tiny版本,解决办法安 ...
- 浅谈Javascript中的void操作符
由于JS表达式偏啰嗦,于是最近便开始采用Coffeescript来减轻负担.举个栗子,当我想取屋子里的第一条dog时,首先要判断house对象是否存在,然后再判断house.dogs是否存在,最后取h ...
- Securecrt emacs/vi 代码无法高亮、无颜色
无法高亮: 这是因为.bashrc中没有 export term=linux 最后,代码恢复正常:
- Zookeeper命令操作
Zookeeper支持某些特定的四字命令字母与其的交互.他们大多数是查询命令,用来获取Zookeeper服务的当前状态及相关信息.用户在客户端可以通过telnet或nc向Zookeeper提交相应的命 ...
- 单例设计模式-java
在实际项目中单例模式常见应用场景列举如下: 1.servlet编程中,每个servlet就是单例 2.网站计数器,和Application(servlet中涉及) 3.Strucs1框架中,控制器对象 ...
- 编译Sqoop2错误解决
Sqoop2的代码结构相对于Sqoop做了大幅度调整,当中编译方式也从ant+maven杂糅的方式变为依赖maven3.今天将源码下下来,放到linux測试机器/export/build下后,执行&q ...
- 在windows下codeblocks中配置pthread库
转自:http://blog.csdn.net/u013172314/article/details/50846198 如果添加方法不正确,可能会出现pthread_create’未定义的引用,所以下 ...