HDU 5289 Assignment(多校2015 RMQ 单调(双端)队列)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5289
ability of any two staff is less than k, and their numbers are continuous. Tom want to know the number of groups like this.
than k. The second line contains n integers:a[1],a[2],…,a[n](0<=a[i]<=10^9),indicate the i-th staff’s ability.
2
4 2
3 1 2 4
10 5
0 3 4 5 2 1 6 7 8 9
5
28HintFirst Sample, the satisfied groups include:[1,1]、[2,2]、[3,3]、[4,4] 、[2,3]
题意:
给出一个整数序列,求有多少个区间满足区间里的最大元素与最小元素的差不超过k”。
PS:
1:能够先用Rmq处理出区间的最值,再枚举区间。当然一味的枚举肯定没有以下两种方法快!
2:用单调(双端)队列维护区间最值
3:枚举左端点,二分右端点,用ST算法求区间最值
代码一例如以下:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <iostream>
using namespace std;
const int MAXN = 100117; int num[MAXN]; int F_Min[MAXN][30],F_Max[MAXN][30]; void Init(int n)
{
for(int i = 1; i <= n; i++)
{
F_Min[i][0] = F_Max[i][0] = num[i];
} for(int i = 1; (1<<i) <= n; i++) //按区间长度递增顺序递推
{
for(int j = 1; j+(1<<i)-1 <= n; j++) //区间起点
{
F_Max[j][i] = max(F_Max[j][i-1],F_Max[j+(1<<(i-1))][i-1]);
F_Min[j][i] = min(F_Min[j][i-1],F_Min[j+(1<<(i-1))][i-1]);
}
}
} int Query_max(int l,int r)
{
int k = (int)(log(double(r-l+1))/log((double)2));
return max(F_Max[l][k], F_Max[r-(1<<k)+1][k]);
} int Query_min(int l,int r)
{
int k = (int)(log(double(r-l+1))/log((double)2));
return min(F_Min[l][k], F_Min[r-(1<<k)+1][k]);
}
int solve(int l, int r)
{
return Query_max(l,r)-Query_min(l,r);
}
int main()
{
int t;
int n, k;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&k);
for(int i = 1; i <= n; i++)
{
scanf("%d",&num[i]);
}
Init(n);
__int64 ans = 0;
int pos = 1;
for(int i = 1; i <= n; i++)
{
while(solve(pos, i) >= k && pos < i)
{
pos++;
}
ans+=i-pos+1;
}
printf("%I64d\n",ans);
}
return 0;
}
代码二例如以下:http://www.bubuko.com/infodetail-987302.html
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std ;
#define LL __int64
deque <LL> deq1 , deq2 ;
//单调队列,deq1最大值,deq2最小值
LL a[100010] ;
int main()
{
int t , n , i , j ;
LL k , ans ;
scanf("%d", &t) ;
while( t-- )
{
scanf("%d %I64d", &n, &k) ;
for(i = 0 ; i < n ; i++)
scanf("%I64d", &a[i]) ;
if(k == 0)
{
printf("0\n") ;
continue ;
}
while( !deq1.empty() ) deq1.pop_back() ;
while( !deq2.empty() ) deq2.pop_back() ;
for(i = 0 , j = 0 , ans = 0; i < n ; i++) //i在前,j在后
{
while( !deq1.empty() && deq1.back() < a[i] ) deq1.pop_back() ;
deq1.push_back(a[i]) ;
while( !deq2.empty() && deq2.back() > a[i] ) deq2.pop_back() ;
deq2.push_back(a[i]) ;
while( !deq1.empty() && !deq2.empty() && deq1.front() - deq2.front() >= k )
{
ans += (i-j) ;
//printf("%d %d,%I64d %I64d\n", i , j, deq1.front() , deq2.front() ) ;
if( deq1.front() == a[j] ) deq1.pop_front() ;
if( deq2.front() == a[j] ) deq2.pop_front() ;
j++ ;
}
}
while( j < n )
{
ans += (i-j) ;
j++ ;
}
printf("%I64d\n", ans) ;
}
return 0 ;
}
代码三例如以下:http://www.bubuko.com/infodetail-987919.html
#include<cstdio>
#include<cstring>
#include<cmath>
#define LL long long
#define Max(a,b) ((a)>(b)? (a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std; const int N=200007;
int minn[N][20];//2^18=262144 2^20=1048576
int maxx[N][20]; //----------------------查询O(1)-------------
int queryMin(int l,int r)
{
int k=floor(log2((double)(r-l+1)));//2^k <= (r - l + 1),floor()向下取整函数
return Min(minn[l][k],minn[r-(1<<k)+1][k]);
} int queryMax(int l,int r)
{
int k=floor(log2((double)(r-l+1)));
return Max(maxx[l][k],maxx[r-(1<<k)+1][k]);
}
//------------------------------------------------- int calc(int l,int r)
{
int k=log2((double)(r-l+1));
int MAX=Max(maxx[l][k],maxx[r-(1<<k)+1][k]);
int MIN=Min(minn[l][k],minn[r-(1<<k)+1][k]);
return MAX-MIN;
} int main()
{
int T;
int n,k,i,j,p;
LL ans;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&k);
for(i=1; i<=n; ++i)
{
scanf("%d",&j);
minn[i][0]=maxx[i][0]=j;
}
//------------------------------------------预处理O(nlogn)---------------
for(j=1; (1<<j)<=n; ++j)//1<<j==2^j,枚举区间长度1,2,4,8。16。,。。,
for(i=1; i+(1<<j)-1<=n; ++i)//i+(1<<j)-1表示区间右边界,枚举区间左边界
{
p=(1<<(j-1));
minn[i][j]=Min(minn[i][j-1],minn[i+p][j-1]);
maxx[i][j]=Max(maxx[i][j-1],maxx[i+p][j-1]);
}
//----------------------------------------------------------------------- //---------------------------枚举左端点,二分右端点--------------------------- int l,r,mid;
ans=0;
//左端点固定为i,右端点用l,r,mid去确定,最后用l和r中的当中一个,此时l+1==r
for(i=1; i<=n; ++i)
{
l=i,r=n;
while(l+1<r)
{
mid=(l+r)>>1;//(l+r)/2==(l+r)>>1
if(calc(i,mid)<k)
{
l=mid;
}
else
{
r=mid-1;//自己去演示算法流程就知道r能够赋值mid-1
}
}
if(calc(i,r)<k)
{
ans=ans+(LL)(r-i+1);
}
else
{
ans=ans+(LL)(l-i+1);
}
}
//---------------------------------------------------------------------------
printf("%lld\n",ans);
}
return 0;
}
HDU 5289 Assignment(多校2015 RMQ 单调(双端)队列)的更多相关文章
- Vijos1834 NOI2005 瑰丽华尔兹 动态规划 单调双端队列优化
设dp[t][x][y]表示处理完前t个时间段,钢琴停留在(x,y)处,最多可以走多少个格子 转移时只需逆着当前倾斜的方向统计len个格子(len为时间区间的长度,len=t-s+1),如果遇到障碍就 ...
- HDU 6319 Ascending Rating (单调双端队列)
题意:给定一个序列a[1..n],对于每个长度为m的连续子区间,求出区间的最大值和从左往右扫描该区间最大值的变化次数. 分析:先O(n)处理出整个序列的值.求出每个长度为m的连续区间中的最大值可以用单 ...
- HDU - 5289 Assignment (RMQ+二分)(单调队列)
题目链接: Assignment 题意: 给出一个数列,问其中存在多少连续子序列,使得子序列的最大值-最小值<k. 题解: RMQ先处理出每个区间的最大值和最小值(复杂度为:n×logn),相 ...
- HDU 5289 Assignment [优先队列 贪心]
HDU 5289 - Assignment http://acm.hdu.edu.cn/showproblem.php?pid=5289 Tom owns a company and he is th ...
- 双端队列(单调队列)poj2823 区间最小值(RMQ也可以)
Sliding Window Time Limit: 12000MS Memory Limit: 65536K Total Submissions: 41844 Accepted: 12384 ...
- STL-Deque(双端队列)与单调队列的实现
前言: STl是个好东西,虽然他在不开O2的条件下会跑的很慢,但他着实会让你的代码可读性大大提高,令你的代码看起来既简单又整洁. 双端队列: 顾名思义,双端队列是有两个头的,一个队首指针,一个队尾指针 ...
- 22.1.23Manacher算法、双端队列、单调栈
22.1.23Manacher算法.双端队列.单调栈 1.Manacher算法 1)用途: Manacher算法用于解决类似求某个字符串中最长的回文子串.(回文就是正着读和倒着读一样的结构). 2)算 ...
- 二分+RMQ/双端队列/尺取法 HDOJ 5289 Assignment
题目传送门 /* 题意:问有几个区间最大值-最小值 < k 解法1:枚举左端点,二分右端点,用RMQ(或树状数组)求区间最值,O(nlog(n))复杂度 解法2:用单调队列维护最值,O(n)复杂 ...
- HDU 5289 Assignment(二分+RMQ-ST)
Assignment Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total ...
随机推荐
- [译]为什么Vue不支持templateURL
原文链接 Vue的新用户最常问的一个问题,特别是以前使用Angular的用户,是"我可以使用" templateURL吗?这个问题我回答过很多次,现在写一个统一回复. 在Angul ...
- SpringBoot使用拦截器
SpringBoot的拦截器只能拦截流经DispatcherServlet的请求,对于自定义的Servlet无法进行拦截. SpringMVC中的拦截器有两种:HandlerInterceptor和W ...
- Linux命令-某个用户组下面的所有用户
groups 查看当前登录用户的组内成员 groups gliethttp 查看gliethttp用户所在的组,以及组内成员whoami 查看当前登录用户名 系统内有关组的信息放在/etc/group ...
- 关于JavaScript中Get/Set访问器
有时候大家可能会纳闷,在使用JavaScript的时候,只需要给一个系统变量赋值就可以触发一系列操作去相应. 但是我们在写Js的时候,修改了一个自定义变量,却连个P都没有.是不是很郁闷呢? 其实,我们 ...
- 3dmax 物体的真正局部空间原点
假设在3dmax中创建一个 长x宽x高=1cm x 1cm x 1cm 的单位立方体,则默认局部坐标系原点在底面中心,进入 “层次”面板->轴->调整轴,按下“仅影响轴”,再点“居中到对象 ...
- php分割字符串方法速度比較(substr/sscanf/preg_match)
固定長度的字串(假設是 06481a63041b578d702f159f520847f8), 要照固定格式做切割, 使用 PHP 要怎麼切會比較快? 註: 要將此字串切成 => 06 / 48 ...
- (转) 共享个很棒的vim配置
发现了一个很棒的vim配置方法,现在共享给大家. https://github.com/kepbod/ivim ivim - The Vim Distribution of Xiao-Ou Zha ...
- MarkDown的vim插件安装
作用:可以使markdown语法高亮.1.安装.使用pathogen插件管理. cd ~/.vim/bundle git clone https://github.com/plasticb ...
- wpf程序线程与UI内容交互
在UI线程里执行复杂的操作,会造成UI假死.常用的解决方法是开2个线程. 而新线程要调用UI里的东西,必须这么用: this.Dispatcher.Invoke(content);
- lua字符串
本文内容基于版本:Lua 5.3.0 概述 Lua字符串中的合法字符可以是任何的1字节数据,这包括了C语言中表示字符串结束的'\0'字符,也就是说Lua字符串在内部将以带长度的内存块的形式存储,存储的 ...