Spark在master node生成DAG之后,将DAG以及map函数,action函数进行打包,还有一个很重的打包内容:如何在worker节点执行。统统打包之后传递给YARN,YARN本身只是负责分配资源,以及将上游应用要执行的内容(spark打的函数包)放在分配的资源里面执行;执行内容他并不知晓;可以是向worker节点监听的某个端口发送指令;可以是执行本地的一个shell脚本等等。
在YARN集群的模式下,并不是container里面的程序访问容器外面的executor,而是每个container里面跑的是就executor;executor来执行Task的业务逻辑。spark自己的Applicatin Master在想YARN的slave Node申请container的时候传递的CLC(Container Lauch Context)其实就是就是一个构建了包含executor的环境。
Spark提交给YARN两种模式,一种是yarn-cluster,另外一种是yarn-client;两者的区别在于Driver执行(以及产生的SparkContext的实例)在什么地方,前者是在Client端,这种方式比较容易调试,多用于测试调试阶段,因为sparkContext在client端,可以看到日志信息;后者Driver的执行实在NodeManager的一个容器中,这意味着yarn-cluster模式下,client向YARN提交一个application之后,就可以什么都不做了(比如选择直接退出),因为driver的运行,DAG的生成以及Scheduler等都是在NodeManager的container里面执行的,和applicationMaster在同一个容器内;
SparkContext的位置的不同导致了后续沟通的不同;因为SparkContext后续是要和container沟通的,yarn-client模式就是yarn集群之外的client和NodeManager里面的executor交互,yarn-cluster则是在集群内部交互。
 
在YARN里面跑的是Executor,每个Executor都是一个进程(不是线程);
 
使用YARN的几点理由:
1. YARN提供了资源队列以及资源池的模式来处理提交的任务;
2. spark standalone模式,要求每个application一个executor;YARN可以让你选择executor的数量;
3. YARN未来将会实现container的动态伸缩(现在还不支持https://issues.apache.org/jira/browse/YARN-1197),可以享受这种YARN才有的资源透明伸缩;
3. 支持认证,基于Kerberos的安全认证。
 
参考:

Spark和YARN的更多相关文章

  1. Spark on YARN的部署

    Spark on YARN的原理就是依靠yarn来调度Spark,比默认的Spark运行模式性能要好的多,前提是首先部署好hadoop HDFS并且运行在yarn上,然后就可以开始部署spark on ...

  2. 配置Spark on YARN集群内存

    参考原文:http://blog.javachen.com/2015/06/09/memory-in-spark-on-yarn.html?utm_source=tuicool 运行文件有几个G大,默 ...

  3. Spark on Yarn 学习(一)

    最近看到明风的关于数据挖掘平台下实用Spark和Yarn来做推荐的PPT,感觉很赞,现在基于大数据和快速计算方面技术的发展很快,随着Apache基金会上发布的一个个项目,感觉真的新技术将会不断出现在大 ...

  4. Spark on Yarn:任务提交参数配置

    当在YARN上运行Spark作业,每个Spark executor作为一个YARN容器运行.Spark可以使得多个Tasks在同一个容器里面运行. 以下参数配置为例子: spark-submit -- ...

  5. 运行 Spark on YARN

    运行 Spark on YARN Spark 0.6.0 以上的版本添加了在yarn上执行spark application的功能支持,并在之后的版本中持续的 改进.关于本文的内容是翻译官网的内容,大 ...

  6. Spark On YARN使用时上传jar包过多导致磁盘空间不够。。。

    今天测试过程中发现YARN Node变成Unhealthy了,后来定位到硬盘空间不够..... 通过查找大于100M的文件时发现有N多个spark-assembly-1.4.0-SNAPSHOT-ha ...

  7. Spark on YARN两种运行模式介绍

    本文出自:Spark on YARN两种运行模式介绍http://www.aboutyun.com/thread-12294-1-1.html(出处: about云开发)   问题导读 1.Spark ...

  8. Spark源码系列(七)Spark on yarn具体实现

    本来不打算写的了,但是真的是闲来无事,整天看美剧也没啥意思.这一章打算讲一下Spark on yarn的实现,1.0.0里面已经是一个stable的版本了,可是1.0.1也出来了,离1.0.0发布才一 ...

  9. Apache Spark源码走读之8 -- Spark on Yarn

    欢迎转载,转载请注明出处,徽沪一郎. 概要 Hadoop2中的Yarn是一个分布式计算资源的管理平台,由于其有极好的模型抽象,非常有可能成为分布式计算资源管理的事实标准.其主要职责将是分布式计算集群的 ...

  10. Spark on Yarn

    Spark on Yarn 1. Spark on Yarn模式优点 与其他计算框架共享集群资源(eg.Spark框架与MapReduce框架同时运行,如果不用Yarn进行资源分配,MapReduce ...

随机推荐

  1. AI学习资料

    OpenAI Gym介绍 http://m.blog.csdn.net/u010510350/article/details/71450232

  2. SQL学习笔记四(补充-2-1)之MySQL SQL查询作业答案

    阅读目录 一 题目 二 答案 一 题目 1.查询所有的课程的名称以及对应的任课老师姓名 2.查询学生表中男女生各有多少人 3.查询物理成绩等于100的学生的姓名 4.查询平均成绩大于八十分的同学的姓名 ...

  3. Anaconda ubuntu16.04 Cuda 8.0安装pytorch

    Pytorch 安装 Pytorch安装真的太让人省心了,在anaconda的环境下进行安装,只需要一个命令 具体命令请查看官网pytorch 找到适合你的版本进行安装 本机环境: anaconda3 ...

  4. TP中上传文件图片的实现

    GoodsController.class.php控制器页面<?php namespace Admin\Controller; use Think\Controller; class Goods ...

  5. Postman模拟json传参

    首先在headers中,设置Content-Type为applicationon/json,如图: 然后再body中,选择raw,写入json数据结构,如图:

  6. SpringBoot在启动时的多环境配置以及加载顺序

    通常我们在开发完成一个SpringBoot项目时,总是要打包部署的. 在启动SpringBoot应用时,我们常常会使用命令java -jar xxx.jar来启动这个服务. 命令java -jar 除 ...

  7. Android多个Module统一配置相同jar或库的版本号

    Android Studio多个Module依赖相同的库时对版本号进行统一配置 在Android项目中,一个项目经常会依赖其他的一个甚至多个库文件,在这种依赖的时候最常见的一个错误就是 jar包版本不 ...

  8. Vue.js 数据绑定语法详解

    Vue.js 数据绑定语法详解 一.总结 一句话总结:Vue.js 的模板是基于 DOM 实现的.这意味着所有的 Vue.js 模板都是可解析的有效的 HTML,且通过一些特殊的特性做了增强.Vue ...

  9. Hive之基本操作

    1,CREATE table. CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name [(col_name data_type [COMMENT col ...

  10. UVA-1343 The Rotation Game (IDA*)

    题目大意:数字1,2,3都有八个,求出最少的旋转次数使得图形中间八个数相同.旋转规则:对于每一长行或每一长列,每次旋转就是将数据向头的位置移动一位,头上的数放置到尾部.若次数相同,则找出字典序最小旋转 ...