最优布线问题(wire.cpp)
#include<iostream>
using namespace std;
#include<cstring>
#define N 2010
int minn[N];
int map[N][N];
bool vis[N];
int n,m;
int sum;
int main()
{
memset(minn,0x7f,sizeof(minn));
cin>>n;
for(int i=;i<=n;++i)
{
for(int j=;j<=n;++j)
cin>>map[i][j];
}
minn[]=;
for(int i=;i<=n;++i)
{
int k=;
for(int j=;j<=n;++j)
if(!vis[j]&&minn[k]>minn[j])k=j;
vis[k]=;
for(int j=;j<=n;++j)
{
if(!vis[j]&&(map[k][j]<minn[j]))
minn[j]=map[k][j];
}
}
for(int k=;k<=n;++k)sum+=minn[k];
cout<<sum;
return ;
}
最优布线问题(wire.cpp)的更多相关文章
- 27.prim算法 最优布线问题(wire.cpp)
[例4-10].最优布线问题(wire.cpp) [问题描述] 学校有n台计算机,为了方便数据传输,现要将它们用数据线连接起来.两台计算机被连接是指它们间有数据线连接.由于计算机所处的位置不同,因此不 ...
- [图论]最优布线问题:kruskal
最优布线问题 目录 最优布线问题 Description Input Output Sample Input Sample Output Hint 解析 代码 Description 学校有n台计算机 ...
- [图论]最优布线问题:prim
最优布线问题 目录 最优布线问题 Description Input Output Sample Input Sample Output Hint 解析 代码 Description 学校有n台计算机 ...
- codevs1231 最优布线问题
1231 最优布线问题 题目描述 Description 学校需要将n台计算机连接起来,不同的2台计算机之间的连接费用可能是不同的.为了节省费用,我们考虑采用间接数据传输结束,就是一台计算机可以间接地 ...
- Codevs 1231 最优布线问题
题目描述 Description 学校需要将n台计算机连接起来,不同的2台计算机之间的连接费用可能是不同的.为了节省费用,我们考虑采用间接数据传输结束,就是一台计算机可以间接地通过其他计算机实现和另外 ...
- [wikioi]最优布线问题
http://wikioi.com/problem/1231/ Kruskal+并查集.comp函数里面如果用const引用的话,可以减少copy.并查集find的时候是递归找父亲的根.无他. #in ...
- (最小生成树) codeVs 1231 最优布线问题
题目描述 Description 学校需要将n台计算机连接起来,不同的2台计算机之间的连接费用可能是不同的.为了节省费用,我们考虑采用间接数据传输结束,就是一台计算机可以间接地通过其他计算机实现和另外 ...
- 24.最优布线问题(kruskal算法)
时间限制: 1 s 空间限制: 128000 KB 题目等级 : 白银 Silver 题解 查看运行结果 题目描述 Description 学校需要将n台计算机连接起来,不同的2台计算机之间的连接费用 ...
- T1231 最优布线 codevs
http://codevs.cn/problem/1231/ 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 白银 Silver 题目描述 Description 学校需要将n ...
随机推荐
- CNN识别验证码1
之前学习python的时候,想尝试用requests实现自动登陆,但是现在网站登陆都会有验证码保护,主要是为了防止暴力破解,任意用户注册.最近接触深度学习,cnn能够进行图像识别,能够进行验证码识别. ...
- 【JavaScript】颜色选择器
颜色空间RGB与HSV(HSL)的转换 好文推荐:http://blog.csdn.net/jiangxinyu/article/details/8000999 从 HSV 到 RGB 的转换 类似的 ...
- 【转】CopyOnWriteArrayList
初识CopyOnWriteArrayList 第一次见到CopyOnWriteArrayList,是在研究JDBC的时候,每一个数据库的Driver都是维护在一个CopyOnWriteArrayLis ...
- C#回调实现的一般过程
C#回调实现的一般过程 C#的方法回调机制,是建立在委托基础之上的,下面给出它的典型实现过程. (一) 定义.声明回调 Delegate void DoSomeCallBack(type para); ...
- 跳转到AppStore下载app
[[UIApplication sharedApplication] openURL:[NSURL URLWithString:@"http://itunes.apple.com/cn/ap ...
- 《AngularJS即学即用》读书笔记(一)
最近在学习angularJS,就买了一本<AngularJS即学即用>作为自己的入门书籍,到目前为止看了两章的内容,感觉这本书还是不错的,东西讲的浅显易懂.之所以写这篇文章,一是督促自己能 ...
- [LuoguP1360][USACP07MAR]黄金阵容均衡
[LuoguP1360][USACP07MAR]黄金阵容均衡(Link) 每天会增加一个数\(A\),将\(A\)二进制分解为\(a[i]\),对于每一个\(i\)都增加\(a[i]\),如果一段时间 ...
- 字符型设备驱动程序-first-printf以及点亮LED灯(二)
编译这几个函数之前要学一下:Linux 的几个操作命令. 学习地址:http://edu.51cto.com/lesson/id-101824.html 重要的命令 有4个 :分别是 1.lsmod, ...
- PDO介绍(16)
安装PDO PDO的数据选项 链接到数据库服务器并选择数据库 错误处理 获取和设置属性 查询执行 准备语句介绍 获取数据 设置绑定列 处理事务
- OpenID Connect Core 1.0(六)使用隐式验证流
3.2 使用隐式验证流(Authentication using the Implicit Flow) 本节描述如何使用隐式流程执行验证.使用隐式流程时,所有令牌从授权终结点返回:不使用令牌终结点返回 ...