点此看题面

大致题意: 给你一张\(DAG\),多组询问,每次问你在起点不为某些点的前提下,到达给定终点的最大距离是多少。

设阈值

由于限制点数总和与\(n\)同阶,因此容易想到去设阈值。

对于限制点数少于\(\sqrt n\)的询问,首先我们可以\(O(n\sqrt n)\)预处理出对于每个点到其距离前\(\sqrt n\)大的点及其距离。

关于这个,可以通过在\(DAG\)上归并转移处理出来。

然后询问时只要\(O(\sqrt n)\)对于给定终点找到第一个非限制点即可。

对于限制点数大于等于\(\sqrt n\)的询问,我们直接\(O(n)\)暴力。

由于这种询问个数不超过\(\sqrt n\)个,因此时间复杂度也是\(O(n\sqrt n)\)的。

代码

#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 100000
#define M 200000
#define SN 400
#define Gmax(x,y) (x<(y)&&(x=(y)))
#define add(x,y) (e[++ee].nxt=lnk[x],e[lnk[x]=ee].to=y)
#define add_(x,y) (e_[++ee_].nxt=lnk_[x],e_[lnk_[x]=ee_].to=y)
using namespace std;
int n,m,sn,fg,ee,ee_,s[N+5],lnk[N+5],lnk_[N+5];struct edge {int to,nxt;}e[M+5],e_[M+5];
class FastIO
{
private:
#define FS 100000
#define tc() (A==B&&(B=(A=FI)+fread(FI,1,FS,stdin),A==B)?EOF:*A++)
#define pc(c) (C==E&&(clear(),0),*C++=c)
#define tn (x<<3)+(x<<1)
#define D isdigit(c=tc())
int T;char c,*A,*B,*C,*E,FI[FS],FO[FS],S[FS];
public:
I FastIO() {A=B=FI,C=FO,E=FO+FS;}
Tp I void read(Ty& x) {x=0;W(!D);W(x=tn+(c&15),D);}
Ts I void read(Ty& x,Ar&... y) {read(x),read(y...);}
Tp I void write(Ty x) {W(S[++T]=x%10+48,x/=10);W(T) pc(S[T--]);}
Tp I void writeln(Con Ty& x) {write(x),pc('\n');}
I void writeNA() {pc('-'),pc('1'),pc('\n');}
I void clear() {fwrite(FO,1,C-FO,stdout),C=FO;}
#undef D
}F;
class ListDper//预处理
{
private:
int f[N+5][SN+5],g[N+5][SN+5],f_[SN+5],g_[SN+5],used[N+5];
public:
I void Init()//预处理
{
RI i,j,w,k,px,py,pt,ti=0;for(i=1;i<=n;++i) f[i][1]=0,g[i][1]=i;//初始化
for(i=1;i<=n;++i) for(j=lnk[i];j;j=e[j].nxt)//枚举点转移
{
#define Push1 (f_[pt]=f[i][px]+1,used[g_[pt++]=g[i][px++]]=ti)
#define Push2 (f_[pt]=f[k][py],used[g_[pt++]=g[k][py++]]=ti)
++ti,k=e[j].to,px=py=pt=1;W(g[i][px]&&g[k][py]&&pt<=sn)//归并
{
if(used[g[i][px]]==ti) {++px;continue;}//每个点只考虑一次,这里用了时间戳
if(used[g[k][py]]==ti) {++py;continue;}//同上
f[i][px]+1>=f[k][py]?Push1:Push2;//注意转移时距离会加1
}
W(g[i][px]&&pt<=sn) used[g[i][px]]^ti?Push1:++px;//处理剩余点
W(g[k][py]&&pt<=sn) used[g[k][py]]^ti?Push2:++py;//同上
for(w=1;w^pt;++w) f[k][w]=f_[w],g[k][w]=g_[w];//更新数组
}
}
I void Solve(CI x)//求答案
{
RI p=1;W(g[x][p]&&s[g[x][p]]==fg) ++p;//扫一遍求答案
g[x][p]?F.writeln(f[x][p]):F.writeNA();//输出答案
}
}D;
class BruteForceSolver//暴力
{
private:
int dis[N+5];
public:
I void Solve(CI x)
{
RI i,j,ans=-1;for(i=1;i^x;++i) dis[i]=-1e9;dis[x]=0;//初始化赋值
for(i=x;i;--i) for(s[i]^fg&&Gmax(ans,dis[i]),j=lnk_[i];j;j=e_[j].nxt) Gmax(dis[e_[j].to],dis[i]+1);//暴力
~ans?F.writeln(ans):F.writeNA();//输出答案
}
}B;
int main()
{
RI Qtot,i,x,y,z;for(F.read(n,m,Qtot),sn=sqrt(n),i=1;i<=m;++i) F.read(x,y),add(x,y),add_(y,x);//读入+建边
D.Init();W(Qtot--) {for(F.read(x,y),++fg,i=1;i<=y;++i) F.read(z),s[z]=fg;y<sn?D.Solve(x):B.Solve(x);}//处理询问
return F.clear(),0;
}

【LOJ2838】「JOISC 2018 Day 3」比太郎的聚会(设阈值预处理/分块)的更多相关文章

  1. 「JOISC 2018 Day 3」比太郎的聚会

    题解: 很套路的题目 我们按照询问中的不算的个数是否大于$block$分类 如果大于,就$O(n)dp$一下 如果小于,就预处理出到每个点前$block$小的点 $block取\sqrt{n}$的话复 ...

  2. loj#2838 「JOISC 2018 Day 3」比太郎的聚会

    分析 预处理每个点的前根号小的距离 对于每次询问删除点小于根号则已经处理好 否则直接暴力dp即可 代码 #include<bits/stdc++.h> using namespace st ...

  3. [LOJ #2833]「JOISC 2018 Day 1」帐篷

    题目大意:有一个$n\times m$的网格图,若一个人的同一行或同一列有人,他就必须面向那个人,若都无人,就可以任意一个方向.若一个人无法确定方向,则方案不合法,问不同的方案数.$n,m\leqsl ...

  4. LOJ 2840「JOISC 2018 Day 4」糖

    有趣的脑子题(可惜我没有脑子 好像也可以称为模拟费用流(? 我们考虑用链表维护这个东西 再把贡献扔到堆里贪心就好了 大概就是类似于有反悔机制的贪心?我们相当于把选中的一个打上一个-v的tag然后如果选 ...

  5. LOJ #2831. 「JOISC 2018 Day 1」道路建设 线段树+Link-cut-tree

    用 LCT 维护颜色相同连通块,然后在线段树上查一下逆序对个数就可以了. code: #include <cstdio> #include <algorithm> #inclu ...

  6. Loj #2731 「JOISC 2016 Day 1」棋盘游戏

    Loj 2731 「JOISC 2016 Day 1」棋盘游戏 JOI 君有一个棋盘,棋盘上有 \(N\) 行 \(3\) 列 的格子.JOI 君有若干棋子,并想用它们来玩一个游戏.初始状态棋盘上至少 ...

  7. 【LibreOJ】#6354. 「CodePlus 2018 4 月赛」最短路 异或优化建图+Dijkstra

    [题目]#6354. 「CodePlus 2018 4 月赛」最短路 [题意]给定n个点,m条带权有向边,任意两个点i和j还可以花费(i xor j)*C到达(C是给定的常数),求A到B的最短距离.\ ...

  8. 「JOISC 2016 Day 1」棋盘游戏

    「JOISC 2016 Day 1」棋盘游戏 先判无解:第1,3行有连续的空格或四个角有空格. 然后可以发现有解的情况第1,3行可以在任意时间摆放. 对于某一列,若第2行放有棋子,那么显然可以把棋盘分 ...

  9. 「JOISC 2015 Day 1」卡片占卜

    题目描述 K 理事长是占卜好手,他精通各种形式的占卜.今天,他要用正面写着 I ,背面写着 O 的卡片占卜一下日本 IOI 国家队的选手选择情况. 占卜的方法如下: 首先,选取五个正整数 A,B,C, ...

随机推荐

  1. IDEA创建maven项目慢的不行

    方法二 下载archetype-catalog.xml文件,在maven的VM Options加上-DarchetypeCatalog=local 默认情况下,创建maven项目是从网络下载catal ...

  2. shutil模块(了解)

    目录 一.shutil模块 1.1 zipfile压缩解压缩 1.2 tarfile压缩解压缩 一.shutil模块 高级的文件.文件夹.压缩包处理模块. import shutil # shutil ...

  3. python做中学(二)bool()函数的用法

    定义: bool() 函数用于将给定参数转换为布尔类型,如果没有参数,返回 False. bool 是 int 的子类. 语法: 以下是 bool() 方法的语法: class bool([x] 参数 ...

  4. spring cloud 2.x版本 Gateway自定义过滤器教程

    前言 本文采用Spring cloud本文为2.1.8RELEASE,version=Greenwich.SR3 本文基于前两篇文章eureka-server.eureka-client.eureka ...

  5. IT兄弟连 HTML5教程 HTML5的靠山 RFC、WHATWG是什么WEB的新标准

    RFC是什么 RFC文档也称请求注解文档(Requests for Comments,RFC),这是用于发布Internet标准和Internet其他正式出版物的一种网络文件或工作报告,内容和Inte ...

  6. pytorch_模型参数-保存,加载,打印

    1.保存模型参数(gen-我自己的模型名字) torch.save(self.gen.state_dict(), os.path.join(self.gen_save_path, 'gen_%d.pt ...

  7. 使用Redis实现最近N条数据的决策

    前言 很多时候,我们会根据用户最近一段时间的行为,做出一些相应的策略,从而改变系统的运动轨迹. 举个简单的例子来说明一下: 假设A公司现在有两个合作伙伴(B和C),B和C都是提供天气数据的,现在A公司 ...

  8. pandas 学习 第2篇:Series -(创建,属性,转换和索引)

    序列(Series)是由一组数据(各种NumPy数据类型),以及一组与之相关的数据标签(索引)组成,序列不要求数据类型是相同的. 序列是一个一维数组,只有一个维度(或称作轴)是行(row),在访问序列 ...

  9. Caused by: org.springframework.data.mapping.PropertyReferenceException: No property id found for type Users!

    Spring Data JPA自定义Repository Caused by: org.springframework.data.mapping.PropertyReferenceException: ...

  10. 只想听歌曲的高潮部分?让我用python来教你做个音乐高潮提取器!

    有些时候,我们为了设定手机铃声或者发抖音视频时,会耗费大量时间在音乐剪辑上.尤其是想发布大量抖音视频的时候,我们得收集大量的短音乐,这是一个相当耗费时间的工作.那么,这个音乐高潮的提取能不能自动化呢? ...