反正现在做题那么少就争取做一题写一题博客吧

看到题目发现数字种类不多,而且结合价值的要求可以容易地想到使用费用流

但是我们如果朴素地建图就会遇到一个问题,若\(i,j\)符合要求,那么给\(i,j\)连的应该是双向边,但双向边怎么跑网络流?

所以我们就要考虑怎么给边定向,我们稍加观察就会发现如果\(i,j\)合法,\(j,k\)也合法,那么\(i,k\)显然是不合法的(分四类情况讨论一下都是不合法的)

考虑那个整除出一个质数的条件,我们发现如果我们定义\(ct_i\)为\(a_i\)的所有质因数的指数之和

那么\(i,j\)满足条件当且仅当\((ct_i=ct_j+1\and a_j|a_i)\or(ct_j=ct_i+1\and a_i|a_j)\),这样一来我们就可以解释上面\(i,j,k\)三者的关系了

那么我们发现在有了\(ct_i\)之后我们就可以把数字分在两边,左边放奇数,右边放偶数,这样就构成了一个二分图,我们只从左边向右边连边即可

然后注意一下我们用EK跑最小费用最大流时每一次增广求出的最长路一定不会大于上一次增广求出的最长路,因此直接按顺序累加即可,注意最后一次的特判,详见代码

#include<cstdio>
#include<queue>
#include<iostream>
#define int long long
#define RI register int
#define CI const int&
using namespace std;
const int N=205,INF=1e18;
struct edge
{
int to,nxt,v,c;
}e[N*N<<2]; int n,head[N],s,t,cnt=1,a[N],b[N],c[N],ct[N];
inline int resolve(int x,int ret=0)
{
for (RI i=2;i*i<=x;++i) while (x%i==0) ++ret,x/=i; return ret+(x>1);
}
class Network_Flow
{
private:
queue <int> q; int dis[N],pre[N],lst[N],cap[N]; bool vis[N];
#define to e[i].to
inline bool SPFA(CI s,CI t)
{
RI i; for (i=s;i<=t;++i) dis[i]=-INF; q.push(s);
cap[s]=INF; dis[s]=0; while (!q.empty())
{
int now=q.front(); vis[now]=0; q.pop();
for (i=head[now];i;i=e[i].nxt)
if (e[i].v&&dis[now]+e[i].c>dis[to])
{
dis[to]=dis[pre[to]=now]+e[lst[to]=i].c;
if (cap[to]=min(cap[now],e[i].v),!vis[to]) q.push(to),vis[to]=1;
}
}
return dis[t]!=-INF;
}
#undef to
public:
inline void addedge(CI x,CI y,CI v,CI c)
{
e[++cnt]=(edge){y,head[x],v,c}; head[x]=cnt;
e[++cnt]=(edge){x,head[y],0,-c}; head[y]=cnt;
}
inline int solve(CI s,CI t)
{
int ret=0,ans=0; while (SPFA(s,t))
{
if (ret+dis[t]*cap[t]>=0)
{
ret+=dis[t]*cap[t]; ans+=cap[t];
for (int nw=t;nw!=s;nw=pre[nw])
e[lst[nw]].v-=cap[t],e[lst[nw]^1].v+=cap[t];
} else return ans+ret/(-dis[t]);
}
return ans;
}
}NF;
signed main()
{
RI i,j; for (scanf("%lld",&n),i=1;i<=n;++i) scanf("%lld",&a[i]),ct[i]=resolve(a[i]);
for (i=1;i<=n;++i) scanf("%lld",&b[i]); for (i=1;i<=n;++i) scanf("%lld",&c[i]);
for (t=n+1,i=1;i<=n;++i) if (ct[i]&1) NF.addedge(s,i,b[i],0); else NF.addedge(i,t,b[i],0);
for (i=1;i<=n;++i) if (ct[i]&1) for (j=1;j<=n;++j) if (!(ct[j]&1))
if ((ct[i]+1==ct[j]&&a[j]%a[i]==0)||(ct[j]+1==ct[i]&&a[i]%a[j]==0))
NF.addedge(i,j,INF,c[i]*c[j]); return printf("%lld",NF.solve(s,t)),0;
}

Luogu P4068 [SDOI2016]数字配对的更多相关文章

  1. p4068 [SDOI2016]数字配对

    传送门 分析 我们考虑对所有a[i]质因数分解,然后记cnt[i]为a[i]是由几个质数相乘得到的 然后我们建一个二分图,左面为所有cnt[i]为奇数的点,右面是为偶数的点 我们从源点向左面点连容量b ...

  2. 图论(费用流):BZOJ 4514 [Sdoi2016]数字配对

    4514: [Sdoi2016]数字配对 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 820  Solved: 345[Submit][Status ...

  3. BZOJ 4514: [Sdoi2016]数字配对 [费用流 数论]

    4514: [Sdoi2016]数字配对 题意: 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数 ...

  4. 【bzoj4514】: [Sdoi2016]数字配对 图论-费用流

    [bzoj4514]: [Sdoi2016]数字配对 好像正常的做法是建二分图? 我的是拆点然后 S->i cap=b[i] cost=0 i'->T cap=b[i] cost=0 然后 ...

  5. BZOJ 4514: [Sdoi2016]数字配对

    4514: [Sdoi2016]数字配对 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1606  Solved: 608[Submit][Statu ...

  6. 【BZOJ4514】[Sdoi2016]数字配对 费用流

    [BZOJ4514][Sdoi2016]数字配对 Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ...

  7. BZOJ4514——[Sdoi2016]数字配对

    有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci×cj 的 ...

  8. bzoj4514 [Sdoi2016]数字配对

    Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对 ...

  9. BZOJ4514[Sdoi2016]数字配对——最大费用最大流

    题目描述 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci ...

随机推荐

  1. <Stack> (高频)394 ( 高频)224

    394. Decode String 四种情况: 1. 数字,把之前有的数字乘以10再加本数字 2. ' [ ', 入口, 把之前的数字压入栈中并num归零. 3. ' ] ' ,出口,归零.用dfs ...

  2. 打包一个python解释器

    利用python的exec语句,可以很方便地动态执行python语句.如果一个python代码打包为了exe,其原先的代码就很难更改了.一个好的解决方法就是import相应的库,然后把主程序段放到一个 ...

  3. 添加Chrome插件时出现“程序包无效”等问题的解决办法

    相较之各大浏览器,我最喜欢的便是Chrome了,不只因为Chrome搜索,也因为Google Chrome强大的插件功能. 而这一切的东风,就是"谷歌访问助手". 谷歌访问助手的下 ...

  4. python 学习(day1)

    初识python python的创始人为吉多*范罗苏姆(Guido van Rossum).1989年圣诞节期间,开发出来的脚本解释程序. python是⼀⻔什么样的语言 python 是一门解释型语 ...

  5. 配置vtk(Win8.1 + VS2012+VTK-5.10.1)

    1.下载相关软件 vtk-5.10.1.zip和vtkdata-5.10.1.zip http://www.vtk.org/files/release/5.10/vtk-5.10.1.zip http ...

  6. IT兄弟连 HTML5教程 HTML5行业的发展预测

    现在的互联网市场上,HTML5在快速地成长,甚至是未来几年里将会有很多公司进入HTML5这个领域,HTML5也会像传统的Flex,Flash,Silverlight和Objective-C那样,更容易 ...

  7. 拎壶学python3-----(3)python之while循环用法

    一.下边我们看一个简单的while循环 那怎么计数呢就让输入三次三次后退出: 二. 关于计数这个问题我们一起看一下 (1)关于计数如下: 我们发现这个计数根本停不下来,怎么才能搞成我们想要的计数次数呢 ...

  8. [算法]LeetCode 120:三角形最小路径和

    题目描述: 给定一个三角形,找出自顶向下的最小路径和.每一步只能移动到下一行中相邻的结点上. 例如,给定三角形: [ [2], [3,4], [6,5,7], [4,1,8,3]]自顶向下的最小路径和 ...

  9. efcore dotnet cli add-migrations update-database

    add-migrations update-database 如何通过dotnet cli调用 dotnet tool install --global dotnet-ef dotnet ef mig ...

  10. MySQL(8)---游标

    Mysql(8)-游标 上一遍博客写了有关存储过程的语法知识 Mysql(7)---存储过程 游标或许你在工作中很少用到,但用不到不代表不去了解它,但你真正需要它来解决问题的时候,再花时间去学习很可能 ...