Luogu P4068 [SDOI2016]数字配对
反正现在做题那么少就争取做一题写一题博客吧
看到题目发现数字种类不多,而且结合价值的要求可以容易地想到使用费用流
但是我们如果朴素地建图就会遇到一个问题,若\(i,j\)符合要求,那么给\(i,j\)连的应该是双向边,但双向边怎么跑网络流?
所以我们就要考虑怎么给边定向,我们稍加观察就会发现如果\(i,j\)合法,\(j,k\)也合法,那么\(i,k\)显然是不合法的(分四类情况讨论一下都是不合法的)
考虑那个整除出一个质数的条件,我们发现如果我们定义\(ct_i\)为\(a_i\)的所有质因数的指数之和
那么\(i,j\)满足条件当且仅当\((ct_i=ct_j+1\and a_j|a_i)\or(ct_j=ct_i+1\and a_i|a_j)\),这样一来我们就可以解释上面\(i,j,k\)三者的关系了
那么我们发现在有了\(ct_i\)之后我们就可以把数字分在两边,左边放奇数,右边放偶数,这样就构成了一个二分图,我们只从左边向右边连边即可
然后注意一下我们用EK跑最小费用最大流时每一次增广求出的最长路一定不会大于上一次增广求出的最长路,因此直接按顺序累加即可,注意最后一次的特判,详见代码
#include<cstdio>
#include<queue>
#include<iostream>
#define int long long
#define RI register int
#define CI const int&
using namespace std;
const int N=205,INF=1e18;
struct edge
{
int to,nxt,v,c;
}e[N*N<<2]; int n,head[N],s,t,cnt=1,a[N],b[N],c[N],ct[N];
inline int resolve(int x,int ret=0)
{
for (RI i=2;i*i<=x;++i) while (x%i==0) ++ret,x/=i; return ret+(x>1);
}
class Network_Flow
{
private:
queue <int> q; int dis[N],pre[N],lst[N],cap[N]; bool vis[N];
#define to e[i].to
inline bool SPFA(CI s,CI t)
{
RI i; for (i=s;i<=t;++i) dis[i]=-INF; q.push(s);
cap[s]=INF; dis[s]=0; while (!q.empty())
{
int now=q.front(); vis[now]=0; q.pop();
for (i=head[now];i;i=e[i].nxt)
if (e[i].v&&dis[now]+e[i].c>dis[to])
{
dis[to]=dis[pre[to]=now]+e[lst[to]=i].c;
if (cap[to]=min(cap[now],e[i].v),!vis[to]) q.push(to),vis[to]=1;
}
}
return dis[t]!=-INF;
}
#undef to
public:
inline void addedge(CI x,CI y,CI v,CI c)
{
e[++cnt]=(edge){y,head[x],v,c}; head[x]=cnt;
e[++cnt]=(edge){x,head[y],0,-c}; head[y]=cnt;
}
inline int solve(CI s,CI t)
{
int ret=0,ans=0; while (SPFA(s,t))
{
if (ret+dis[t]*cap[t]>=0)
{
ret+=dis[t]*cap[t]; ans+=cap[t];
for (int nw=t;nw!=s;nw=pre[nw])
e[lst[nw]].v-=cap[t],e[lst[nw]^1].v+=cap[t];
} else return ans+ret/(-dis[t]);
}
return ans;
}
}NF;
signed main()
{
RI i,j; for (scanf("%lld",&n),i=1;i<=n;++i) scanf("%lld",&a[i]),ct[i]=resolve(a[i]);
for (i=1;i<=n;++i) scanf("%lld",&b[i]); for (i=1;i<=n;++i) scanf("%lld",&c[i]);
for (t=n+1,i=1;i<=n;++i) if (ct[i]&1) NF.addedge(s,i,b[i],0); else NF.addedge(i,t,b[i],0);
for (i=1;i<=n;++i) if (ct[i]&1) for (j=1;j<=n;++j) if (!(ct[j]&1))
if ((ct[i]+1==ct[j]&&a[j]%a[i]==0)||(ct[j]+1==ct[i]&&a[i]%a[j]==0))
NF.addedge(i,j,INF,c[i]*c[j]); return printf("%lld",NF.solve(s,t)),0;
}
Luogu P4068 [SDOI2016]数字配对的更多相关文章
- p4068 [SDOI2016]数字配对
传送门 分析 我们考虑对所有a[i]质因数分解,然后记cnt[i]为a[i]是由几个质数相乘得到的 然后我们建一个二分图,左面为所有cnt[i]为奇数的点,右面是为偶数的点 我们从源点向左面点连容量b ...
- 图论(费用流):BZOJ 4514 [Sdoi2016]数字配对
4514: [Sdoi2016]数字配对 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 820 Solved: 345[Submit][Status ...
- BZOJ 4514: [Sdoi2016]数字配对 [费用流 数论]
4514: [Sdoi2016]数字配对 题意: 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数 ...
- 【bzoj4514】: [Sdoi2016]数字配对 图论-费用流
[bzoj4514]: [Sdoi2016]数字配对 好像正常的做法是建二分图? 我的是拆点然后 S->i cap=b[i] cost=0 i'->T cap=b[i] cost=0 然后 ...
- BZOJ 4514: [Sdoi2016]数字配对
4514: [Sdoi2016]数字配对 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1606 Solved: 608[Submit][Statu ...
- 【BZOJ4514】[Sdoi2016]数字配对 费用流
[BZOJ4514][Sdoi2016]数字配对 Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ...
- BZOJ4514——[Sdoi2016]数字配对
有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci×cj 的 ...
- bzoj4514 [Sdoi2016]数字配对
Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对 ...
- BZOJ4514[Sdoi2016]数字配对——最大费用最大流
题目描述 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci ...
随机推荐
- 关闭Chrome浏览器的广告
生活没有绝对的对与错:代码就不一样了,错了就编译不过,也正是因为这样,编程的人思维有时也会陷入一种狭隘中,这就是把工作和生活没有分开.Win10 右下角的广告就像程序调试中的"警告" ...
- springboot+lucene实现公众号关键词回复智能问答
一.场景简介 最近在做公众号关键词回复方面的智能问答相关功能,发现用户输入提问内容和我们运营配置的关键词匹配回复率极低,原因是我们采用的是数据库的Like匹配. 这种模糊匹配首先不是很智能,而且也没有 ...
- 【STM32H7教程】第29章 STM32H7的USART串口基础知识和HAL库API
完整教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=86980 第29章 STM32H7的USART串口基础知识和 ...
- JS setInterval 循环定时器的使用 以及动态倒计时展示
例: var setTime = setInterval(function () { ff(); //每秒调用的方法函数 }, 1000); //1000毫秒为1秒 //可使用 clearInterv ...
- 黄聪:PHP转换网址相对路径到绝对路径的一种方法
相信很多程序(尤其是采集类的程序)都会有需要把网址的相对路径转换成绝对路径的需要,例如采集到某页面的HTML代码中包含资源文件经常会看到这样的文件名: <link rel="style ...
- 调试接口你还在用postman吗
作者 | 陈凯玲 来源 | my.oschina.net/keking/blog/3104972 接口调试是每个软件开发从业者必不可少的一项技能,一个项目的的完成,可能接口测试调试的时间比真正开发写代 ...
- Python3安装impala
步骤: 1.安装Visual C++,目前最新是2019版 安装工作负载c++桌面开发 2.pip3安装模块 pip3 install pure-sasl== pip3 install thrift- ...
- go-函数和错误处理
函数基本语法 func 函数名(形参列表)(返回值列表){ 执行语句 return 返回值列表 }//返回值可以没有可以有多个可以有一个 包 引入 为了解决两个程序员取得函数名同名的情况 原理 本质就 ...
- git clone和git pull的区别
1.需不需要本地文件夹是仓库 git clone是将整个工程复制下来所以,不需要本地是仓库(没有.git文件夹) git clone git pull需要先初始化本地文件夹文一个仓库 git ...
- JS基础语法---数组基础知识总结
数组: 存储一组有序的数据 数组的作用: 一次性存储多个数据 数组的定义方式: 1.构造函数定义数组: var 数组名=new Array(); 2.字面量方式定义数组: var 数组名=[]; ...