UVa-10652 包装木板
Input: standard input
Output: standard output
Time Limit: 2 seconds
The small sawmill in Mission, British Columbia, has developed a brand new way of packaging boards for drying. By fixating the boards in special moulds, the board can dry efficiently in a drying room.
Space is an issue though. The boards cannot be too close, because then the drying will be too slow. On the other hand, one wants to use the drying room efficiently.
Looking at it from a 2-D perspective, your task is to calculate the fraction between the space occupied by the boards to the total space occupied by the mould. Now, the mould is surrounded by an aluminium frame of negligible thickness, following the hull of the boards' corners tightly. The space occupied by the mould would thus be the interior of the frame.
Input
On the first line of input there is one integer, N <= 50, giving the number of test cases (moulds) in the input. After this line, N test cases follow. Each test case starts with a line containing one integer n, 1< n <= 600, which is the number of boards in the mould. Then n lines follow, each with five floating point numbers x, y, w, h, j where 0 <= x, y, w, h <=10000 and –90° < j <=90°. The x and y are the coordinates of the center of the board and w and h are the width and height of the board, respectively. j is the angle between the height axis of the board to the y-axis in degrees, positive clockwise. That is, if j = 0, the projection of the board on the x-axis would be w. Of course, the boards cannot intersect.
Output
For every test case, output one line containing the fraction of the space occupied by the boards to the total space in percent. Your output should have one decimal digit and be followed by a space and a percent sign (%).
Sample Input Output for Sample Input
1 4 4 7.5 6 3 0 8 11.5 6 3 0 9.5 6 6 3 90 4.5 3 4.4721 2.2361 26.565 |
64.3 % |
Swedish National Contest
The Sample Input and Sample Output corresponds to the given picture
题解:白书上的原题。
把每个矩形的四个顶点都找出来,做凸包就是最小的多边形,计算面积就从一个点出发向每个点都连一条对角线,将多边形分成若干个三角形再计算。
比较坑的是,数字和“%”之间还有一个空格>_<!
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<queue>
#include<stack>
#include<set>
#include<vector>
#include<map>
#include<ctime>
#include<string>
using namespace std;
typedef long long LL;
const int INF=0x3f3f3f3f;
const LL inf=0x3f3f3f3f3f3f3f3fLL;
const double eps=1e-10; struct Point{
double x,y;
Point(double xx=0,double yy=0) : x(xx),y(yy) {}
} p[2010],ch[2010];
typedef Point Vector;//定义向量 Vector operator + (Vector a,Vector b) { return Vector(a.x+b.x,a.y+b.y); }
Vector operator - (Vector a,Vector b) { return Vector(a.x-b.x,a.y-b.y); }
Vector operator * (Vector a,Vector b) { return Vector(a.x*b.x,a.y*b.y); }
Vector operator / (Vector a,Vector b) { return Vector(a.x/b.x,a.y/b.y); }
bool operator < (const Point &a,const Point &b) { return a.x==b.x? a.y<b.y:a.x<b.x; } int dcmp(double x)//精度判断
{
if(fabs(x)<eps) return 0;
return x<0 ? -1 : 1;
} double Dot(Vector a,Vector b) { return a.x*b.x+a.y*b.y; } //点积,向量积
double Cross(Vector a,Vector b) { return a.x*b.y-a.y*b.x; }//叉积
double Length(Vector a) { return sqrt(Dot(a,a)); }//向量长度
double Angle(Vector a,Vector b) { return acos(Dot(a,b)/Length(a)/Length(b)); }//向量的夹角
Vector Rotate(Vector a,double rad) { return Vector(a.x*cos(rad)-a.y*sin(rad),a.x*sin(rad)+a.y*cos(rad)); }//逆时针旋转rad
Vector Normal(Vector a){ return Vector(-a.y/Length(a),a.x/Length(a)); }//单位法向量
double torad(double deg) { return deg/180*acos(-1); }//角度转化为弧度 Point GetLineIntersection(Point p,Vector v,Point q,Vector w)//两直线交点
{
Vector u=p-q;
double t=Cross(w,u)/Cross(v,w);
return p+v*t;
} double DistanceToLine(Point p,Point a,Vector b)//点到直线距离
{
Vector v1=b-a,v2=p-a;
return fabs(Cross(v1,v2))/Length(v1);
}
/*
double DistanceToSegment(Point p,Point a,Point b)//点到线段距离
{
if(a==b) return Length(p-a);
Vector v1=b-a,v2=p-a,v3=p-b;
if(dcmp(Dot(v1,v2))<0) return Length(v2);
else if(dcmp(Dot(v1,v3))>0) return Length(v3);
else return fabs(Cross(v1,v2))/Length(v1);
}
*/
Point GetLineProjection(Point p,Point a,Point b)//点在直线的投影点
{
Vector v=b-a;
return a+v*(Dot(v,p-a)/Dot(v,v));
} double Polygonarea(Point *p,int n)//多边形面积(凸,凹)
{
double area=0;
for(int i=1;i<n-1;i++) area+=Cross(p[i]-p[0],p[i+1]-p[0]);
return area/2;
} int Convexhull(Point *p,int n,Point *ch)//凸包
{
sort(p,p+n);
int m=0;
for(int i=0;i<n;i++)
{
while(m>1 && Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0) m--;
ch[m++]=p[i];
}
int k=m;
for(int i=n-2;i>=0;i--)
{
while(m>k && Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0) m--;
ch[m++]=p[i];
}
if(n>1) m--;
return m;
} int N,n;
double x,y,w,h,j; int main()
{
scanf("%d",&N);
while(N--)
{
int flag=0;
double area1=0,area2=0;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%lf%lf%lf%lf%lf",&x,&y,&w,&h,&j);
Point O{x,y};
double rad=-torad(j);
p[flag++]=O + Rotate(Vector(-w/2,-h/2),rad);
p[flag++]=O + Rotate(Vector(w/2,-h/2),rad);
p[flag++]=O + Rotate(Vector(-w/2,h/2),rad);
p[flag++]=O + Rotate(Vector(w/2,h/2),rad);
area1+=w*h;
}
int cnt=Convexhull(p,flag,ch);
area2=Polygonarea(ch,cnt);
printf("%.1lf %%\n",area1*100/area2);
}
return 0;
}
UVa-10652 包装木板的更多相关文章
- UVA 10652 Board Wrapping(二维凸包)
传送门 刘汝佳<算法竞赛入门经典>P272例题6包装木板 题意:有n块矩形木板,你的任务是用一个面积尽量小的凸多边形把它们抱起来,并计算出木板占整个包装面积的百分比. 输入:t组数据,每组 ...
- uva 10652
大意:有n块矩形木板,你的任务是用一个面积尽量小的凸多边形把它们包起来,并计算出木板站整个包装面积的百分比. 思路:按照题意将所有矩形顶点坐标存起来,旋转时先旋转从中心出发的向量,求得各个坐标之后,求 ...
- uva 10652 Board Wrapping (计算几何-凸包)
Problem B Board Wrapping Input: standard input Output: standard output Time Limit: 2 seconds The sma ...
- UVa 10652 (简单凸包) Board Wrapping
题意: 有n块互不重叠的矩形木板,用尽量小的凸多边形将它们包起来,并输出并输出木板总面积占凸多边形面积的百分比. 分析: 几乎是凸包和多边形面积的裸题. 注意:最后输出的百分号前面有个空格,第一次交P ...
- 简单几何(向量旋转+凸包+多边形面积) UVA 10652 Board Wrapping
题目传送门 题意:告诉若干个矩形的信息,问他们在凸多边形中所占的面积比例 分析:训练指南P272,矩形面积长*宽,只要计算出所有的点,用凸包后再求多边形面积.已知矩形的中心,向量在原点参考点再旋转,角 ...
- uva 10652 Board Wrapping
主要是凸包的应用: #include <cstdio> #include <cmath> #include <cstring> #include <algor ...
- UVA 10652 Board Wrapping(凸包)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=32286 [思路] 凸包 根据角度与中心点求出长方形所有点来,然后就 ...
- Uva 10652 Board Wrapping(计算几何之凸包+点旋转)
题目大意:给出平面上许多矩形的中心点和倾斜角度,计算这些矩形面积占这个矩形点形成的最大凸包的面积比. 算法:GRAHAM,ANDREW. 题目非常的简单,就是裸的凸包 + 点旋转.这题自己不会的地方就 ...
- UVA 10652 Board Wrapping(凸包)
The small sawmill in Mission, British Columbia, hasdeveloped a brand new way of packaging boards for ...
- ●UVA 10652 Board Wrapping
题链: https://vjudge.net/problem/UVA-10652 题解: 计算几何,Andrew求凸包, 裸题...(数组开小了,还整了半天...) 代码: #include<c ...
随机推荐
- 淘宝小练习#css
* { margin: 0; padding: 0; } a { text-decoration: none; } .box { background: #f4f4f4; } /* 头部样式STAR ...
- 【笔记】vue和ssm开发接口联调跨域问题
爬了两个小时的大坑 前端在github上拉了个vue项目,由于从来没正式学过vue,跨域这个问题一直困扰了很久. 目前暂时能用的解决方案(开发环境)就是: 前端在vue.config.js中加入代理. ...
- Dev 日志 | 一次 Segmentation Fault 和 GCC Illegal Instruction 编译问题排查 NebulaGraph
摘要 笔者最近在重新整理和编译 Nebula Graph 的第三方依赖,选出两个比较有意思的问题给大家分享一下. Flex Segmentation Fault--Segmentation fault ...
- ArcGIS API For Javascript :如何在地图上做出点位脉冲闪烁的效果
日常地图表达中我们通常使用的地图符号多是静态地图符号,时间久了会造成视觉审美疲劳,也没有现代感. 在这种背景下,对现有地图符号进行简单处理,即可得到色彩鲜艳,对比度强烈,活灵活现的地图表达形式. 灵感 ...
- JS三座大山再学习(一、原型和原型链)
原文地址 ## 前言 西瓜君之前学习了JS的基础知识与三座大山,但之后工作中没怎么用,印象不太深刻,这次打算再重学一下,打牢基础.冲鸭~~ 原型模式 JS实现继承的方式是通过原型和原型链实现的,JS中 ...
- Linux定时任务 crontab(-l -e)、at、batch
1.周期性定时任务crontab cron['krɒn] 一时间单位 table crontab -e 进入编辑定时任务界面,每一行代表一个定时任务,#开头的行为注释行,一行分成6列 分钟 小时 日 ...
- MAC系统下,Jmeter5.1.1 无法录制问题
问题一: 点击[start]先出现一个检查证书信息的弹窗,确保删除旧的安装新的,并且需要信任证书 (一般证书只需要信任一下即可,每次启动都会有这个弹窗提醒) 问题二: MAC OS系统使用Jmeter ...
- android灭屏后调用binder通讯竟然影响了socket的POLL_OUT事件,怪事。
当你的android在灭屏(休眠)时分派(dispatch) Ice调用过程中,如果创建了新的进程,你的响应将不会预期那样工作,尽管你已经调用 ice_response或 ice_exception, ...
- ZeroC ICE的协议
- vue项目中安装使用vux
vux是个vue的移动端框架. 目前移动端UI框架这么多,为啥选择vux呢?vux虽然说是个个人维护项目,但是有15000+个star,应该不比其他的团队开源框架差. 最重要的是,目前要做微信公众号和 ...