UVa-10652 包装木板
Input: standard input
Output: standard output
Time Limit: 2 seconds
The small sawmill in Mission, British Columbia, has developed a brand new way of packaging boards for drying. By fixating the boards in special moulds, the board can dry efficiently in a drying room.
Space is an issue though. The boards cannot be too close, because then the drying will be too slow. On the other hand, one wants to use the drying room efficiently.
Looking at it from a 2-D perspective, your task is to calculate the fraction between the space occupied by the boards to the total space occupied by the mould. Now, the mould is surrounded by an aluminium frame of negligible thickness, following the hull of the boards' corners tightly. The space occupied by the mould would thus be the interior of the frame.
Input
On the first line of input there is one integer, N <= 50, giving the number of test cases (moulds) in the input. After this line, N test cases follow. Each test case starts with a line containing one integer n, 1< n <= 600, which is the number of boards in the mould. Then n lines follow, each with five floating point numbers x, y, w, h, j where 0 <= x, y, w, h <=10000 and –90° < j <=90°. The x and y are the coordinates of the center of the board and w and h are the width and height of the board, respectively. j is the angle between the height axis of the board to the y-axis in degrees, positive clockwise. That is, if j = 0, the projection of the board on the x-axis would be w. Of course, the boards cannot intersect.
Output
For every test case, output one line containing the fraction of the space occupied by the boards to the total space in percent. Your output should have one decimal digit and be followed by a space and a percent sign (%).
Sample Input Output for Sample Input
1 4 4 7.5 6 3 0 8 11.5 6 3 0 9.5 6 6 3 90 4.5 3 4.4721 2.2361 26.565 |
64.3 % |
Swedish National Contest
The Sample Input and Sample Output corresponds to the given picture
题解:白书上的原题。
把每个矩形的四个顶点都找出来,做凸包就是最小的多边形,计算面积就从一个点出发向每个点都连一条对角线,将多边形分成若干个三角形再计算。
比较坑的是,数字和“%”之间还有一个空格>_<!
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<queue>
#include<stack>
#include<set>
#include<vector>
#include<map>
#include<ctime>
#include<string>
using namespace std;
typedef long long LL;
const int INF=0x3f3f3f3f;
const LL inf=0x3f3f3f3f3f3f3f3fLL;
const double eps=1e-10; struct Point{
double x,y;
Point(double xx=0,double yy=0) : x(xx),y(yy) {}
} p[2010],ch[2010];
typedef Point Vector;//定义向量 Vector operator + (Vector a,Vector b) { return Vector(a.x+b.x,a.y+b.y); }
Vector operator - (Vector a,Vector b) { return Vector(a.x-b.x,a.y-b.y); }
Vector operator * (Vector a,Vector b) { return Vector(a.x*b.x,a.y*b.y); }
Vector operator / (Vector a,Vector b) { return Vector(a.x/b.x,a.y/b.y); }
bool operator < (const Point &a,const Point &b) { return a.x==b.x? a.y<b.y:a.x<b.x; } int dcmp(double x)//精度判断
{
if(fabs(x)<eps) return 0;
return x<0 ? -1 : 1;
} double Dot(Vector a,Vector b) { return a.x*b.x+a.y*b.y; } //点积,向量积
double Cross(Vector a,Vector b) { return a.x*b.y-a.y*b.x; }//叉积
double Length(Vector a) { return sqrt(Dot(a,a)); }//向量长度
double Angle(Vector a,Vector b) { return acos(Dot(a,b)/Length(a)/Length(b)); }//向量的夹角
Vector Rotate(Vector a,double rad) { return Vector(a.x*cos(rad)-a.y*sin(rad),a.x*sin(rad)+a.y*cos(rad)); }//逆时针旋转rad
Vector Normal(Vector a){ return Vector(-a.y/Length(a),a.x/Length(a)); }//单位法向量
double torad(double deg) { return deg/180*acos(-1); }//角度转化为弧度 Point GetLineIntersection(Point p,Vector v,Point q,Vector w)//两直线交点
{
Vector u=p-q;
double t=Cross(w,u)/Cross(v,w);
return p+v*t;
} double DistanceToLine(Point p,Point a,Vector b)//点到直线距离
{
Vector v1=b-a,v2=p-a;
return fabs(Cross(v1,v2))/Length(v1);
}
/*
double DistanceToSegment(Point p,Point a,Point b)//点到线段距离
{
if(a==b) return Length(p-a);
Vector v1=b-a,v2=p-a,v3=p-b;
if(dcmp(Dot(v1,v2))<0) return Length(v2);
else if(dcmp(Dot(v1,v3))>0) return Length(v3);
else return fabs(Cross(v1,v2))/Length(v1);
}
*/
Point GetLineProjection(Point p,Point a,Point b)//点在直线的投影点
{
Vector v=b-a;
return a+v*(Dot(v,p-a)/Dot(v,v));
} double Polygonarea(Point *p,int n)//多边形面积(凸,凹)
{
double area=0;
for(int i=1;i<n-1;i++) area+=Cross(p[i]-p[0],p[i+1]-p[0]);
return area/2;
} int Convexhull(Point *p,int n,Point *ch)//凸包
{
sort(p,p+n);
int m=0;
for(int i=0;i<n;i++)
{
while(m>1 && Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0) m--;
ch[m++]=p[i];
}
int k=m;
for(int i=n-2;i>=0;i--)
{
while(m>k && Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0) m--;
ch[m++]=p[i];
}
if(n>1) m--;
return m;
} int N,n;
double x,y,w,h,j; int main()
{
scanf("%d",&N);
while(N--)
{
int flag=0;
double area1=0,area2=0;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%lf%lf%lf%lf%lf",&x,&y,&w,&h,&j);
Point O{x,y};
double rad=-torad(j);
p[flag++]=O + Rotate(Vector(-w/2,-h/2),rad);
p[flag++]=O + Rotate(Vector(w/2,-h/2),rad);
p[flag++]=O + Rotate(Vector(-w/2,h/2),rad);
p[flag++]=O + Rotate(Vector(w/2,h/2),rad);
area1+=w*h;
}
int cnt=Convexhull(p,flag,ch);
area2=Polygonarea(ch,cnt);
printf("%.1lf %%\n",area1*100/area2);
}
return 0;
}
UVa-10652 包装木板的更多相关文章
- UVA 10652 Board Wrapping(二维凸包)
传送门 刘汝佳<算法竞赛入门经典>P272例题6包装木板 题意:有n块矩形木板,你的任务是用一个面积尽量小的凸多边形把它们抱起来,并计算出木板占整个包装面积的百分比. 输入:t组数据,每组 ...
- uva 10652
大意:有n块矩形木板,你的任务是用一个面积尽量小的凸多边形把它们包起来,并计算出木板站整个包装面积的百分比. 思路:按照题意将所有矩形顶点坐标存起来,旋转时先旋转从中心出发的向量,求得各个坐标之后,求 ...
- uva 10652 Board Wrapping (计算几何-凸包)
Problem B Board Wrapping Input: standard input Output: standard output Time Limit: 2 seconds The sma ...
- UVa 10652 (简单凸包) Board Wrapping
题意: 有n块互不重叠的矩形木板,用尽量小的凸多边形将它们包起来,并输出并输出木板总面积占凸多边形面积的百分比. 分析: 几乎是凸包和多边形面积的裸题. 注意:最后输出的百分号前面有个空格,第一次交P ...
- 简单几何(向量旋转+凸包+多边形面积) UVA 10652 Board Wrapping
题目传送门 题意:告诉若干个矩形的信息,问他们在凸多边形中所占的面积比例 分析:训练指南P272,矩形面积长*宽,只要计算出所有的点,用凸包后再求多边形面积.已知矩形的中心,向量在原点参考点再旋转,角 ...
- uva 10652 Board Wrapping
主要是凸包的应用: #include <cstdio> #include <cmath> #include <cstring> #include <algor ...
- UVA 10652 Board Wrapping(凸包)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=32286 [思路] 凸包 根据角度与中心点求出长方形所有点来,然后就 ...
- Uva 10652 Board Wrapping(计算几何之凸包+点旋转)
题目大意:给出平面上许多矩形的中心点和倾斜角度,计算这些矩形面积占这个矩形点形成的最大凸包的面积比. 算法:GRAHAM,ANDREW. 题目非常的简单,就是裸的凸包 + 点旋转.这题自己不会的地方就 ...
- UVA 10652 Board Wrapping(凸包)
The small sawmill in Mission, British Columbia, hasdeveloped a brand new way of packaging boards for ...
- ●UVA 10652 Board Wrapping
题链: https://vjudge.net/problem/UVA-10652 题解: 计算几何,Andrew求凸包, 裸题...(数组开小了,还整了半天...) 代码: #include<c ...
随机推荐
- 玩转VSCode-完整构建VSCode开发调试环境
随着VSCode的不断完善和强大,是时候将部分开发迁移到VS Code中了. 目前使用VS2019开发.NET Core应用,一直有一个想法,在VS Code中复刻VS的开发环境,同时迁移到VS Co ...
- MySQL原生PHP操作-天龙八步
<?php //1.第一步[建立连接] $conn = mysqli_connect('localhost','root','123456') or die('数据库连接失败!'); //2.第 ...
- spring+struts2引起的错误被记忆问题
标题表述的比较模糊,详细情况是这样的: 目前开发的一个管理系统,当使用出现异常时会自动跳转到错误页.其处理流程是“发生异常——跳转到错误处理action——错误页”. 但是出现了一个bug,即某个操作 ...
- java笔试面试第一天
好久未曾启用我的博客,最近来上海找工作,想将笔试面试的过程做个记录,毕竟有总结才有提高嘛.今天算是笔试面试正式开始第一天吧,以下就是我的笔试总结(没有原题了,只有知识点): 笔试题1:java sta ...
- 图片转换成base64预览
来源:https://developer.mozilla.org/zh-CN/docs/Web/API/FileReader/readAsDataURL 真心不错写得,思路比较清晰.已经测试过 注意: ...
- 虚幻4 UE4 蓝图之关卡蓝图实现自动开关门
新建项目 往关卡中放置一个门 在内容浏览器中找到 门 的静态网格体 拖放到关卡中 此时门默认没有碰撞,人物可以直接穿过 给门添加碰撞 双击内容管理器中的 SM_Door,打开编辑窗口 选择菜单&quo ...
- python学习基础—day01
一. python是什么? 优势:简单, 可以跨平台 劣势:执行效率没有C语言那么高 python是解释型语言,逐行编译解释,在不同的系统windows与Linux,需要不同的解释器来编译. 而编译型 ...
- 023.掌握Pod-Pod扩容和缩容
一 Pod的扩容和缩容 Kubernetes对Pod的扩缩容操作提供了手动和自动两种模式,手动模式通过执行kubectl scale命令或通过RESTful API对一个Deployment/RC进行 ...
- python--数字灯管
import turtle import time def drawLine(draw): #绘制单段数码管 turtle.pendown() if draw else turtle.penup() ...
- 题解 P1226 【【模板】快速幂||取余运算】
1.题目分析 原题 本题在于快速幂的使用,以及对long long的应用问题. 2.解题思路 快速幂 求幂常见用法: int pow(int a,int b) { int ans; for(int i ...