Bzoj 2839 集合计数 题解
2839: 集合计数
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 495 Solved: 271
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
Sample Output
HINT
【样例说明】
假设原集合为{A,B,C}
则满足条件的方案为:{AB,ABC},{AC,ABC},{BC,ABC},{AB},{AC},{BC}
【数据说明】
对于100%的数据,1≤N≤1000000;0≤K≤N;
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
#include <cmath>
#include <map>
#define N 1000005
using namespace std;
int n,k,p=;
long long jc[N],ni[N],xp[N];
long long ksm(long long x,long long z)
{
long long ans=;
while(z>)
{
if(z&)
{
ans*=x;
ans%=p;
}
x*=x;x%=p;
z>>=;
}
return ans;
}
int main()
{
scanf("%d%d",&n,&k);
jc[]=;xp[]=;
for(int i=;i<=n;i++)
{
jc[i]=(jc[i-]*i)%p;
xp[i]=(xp[i-]*)%p;
}
ni[n]=ksm(jc[n],p-);
for(int i=n-;i>=;i--)ni[i]=(ni[i+]*(i+))%p;
ni[]=;long long now=;
long long ans=;
for(int i=n-k;i>=;i--)
{
long long tmp=((((now-)*jc[n-k]%p)*ni[i]%p)*ni[n-k-i])%p;
if(i&)ans=(ans-tmp+p)%p;
else
{
ans+=tmp;
ans%=p;
}
now*=now;
now%=p;
}
ans*=((jc[n]*ni[k])%p*ni[n-k])%p;
ans%=p;
printf("%lld\n",ans);
return ;
}
Bzoj 2839 集合计数 题解的更多相关文章
- BZOJ 2839: 集合计数 解题报告
BZOJ 2839: 集合计数 Description 一个有\(N\)个元素的集合有\(2^N\)个不同子集(包含空集),现在要在这\(2^N\)个集合中取出若干集合(至少一个),使得 它们的交集的 ...
- BZOJ 2839: 集合计数 [容斥原理 组合]
2839: 集合计数 题意:n个元素的集合,选出若干子集使得交集大小为k,求方案数 先选出k个\(\binom{n}{k}\),剩下选出一些集合交集为空集 考虑容斥 \[ 交集为\emptyset = ...
- bzoj 2839 集合计数 容斥\广义容斥
LINK:集合计数 容斥简单题 却引出我对广义容斥的深思. 一直以来我都不理解广义容斥是为什么 在什么情况下使用. 给一张图: 这张图想要表达的意思就是这道题目的意思 而求的东西也和题目一致. 特点: ...
- ●BZOJ 2839 集合计数
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2839 题解: 容斥原理 真的是神题!!! 定义 f[k] 表示交集大小至少为 k时的方案数怎 ...
- [BZOJ 2839]集合计数
Description 题库链接 有 \(2^n\) 个集合,每个集合只包含 \([1,n]\) ,且这些集合两两不同.问有多少种选择方法(至少选一个),使得这些集合交集大小为 \(k\) . \(0 ...
- bzoj 2839 : 集合计数 容斥原理
因为要在n个里面选k个,所以我们先枚举选的是哪$k$个,方案数为$C_{n}^k$ 确定选哪k个之后就需要算出集合交集正为好这$k$个的方案数,考虑用容斥原理. 我们还剩下$n-k$个元素,交集至少为 ...
- bzoj 2839 集合计数——二项式反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2839 设 \( g(i) \) 表示至少有 i 个, \( f(i) \) 表示恰好有 i ...
- bzoj 2839 集合计数 —— 二项式反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2839 设 \( f(i) \) 为至少 \( i \) 个选择,则 \( f(i) = C_ ...
- bzoj 2839: 集合计数【容斥原理+组合数学】
首先,考虑容斥,我们所要的答案是并集至少有\( k \)个数的方案数减去并集至少有\( k+1 \)个数的方案数加上并集至少有\( k \)个数的方案数-- 在n个数中选i个的方案数是\( C_{n} ...
随机推荐
- 【Git】生成Patch和使用Patch
1.生成Patch(俗称快照) 先来看看repo manifest 的用法 <1>cd /工作目录/项目目录/.repo/manifests <2>repo manifest ...
- windows media player 播放视频
一.新建windows应用程序项目,添加vedioForm窗体 二.在com组件中找到windows media player,添加引用 三.代码如下: public partial class Ve ...
- 把#define宏转换成指定格式
之前在弄一个东西的,有一大堆的宏,需要把它转换成其它的形式.遇到这种大批量的东西,我特别没有耐心去一个一个的弄,于是写了一段代码. 估计大家平常比较难用得上,不过可以平常相似的情况用来参考. Sort ...
- SQL Server Update 所有表的某一列(列名相同,类型相同)数值
); WITH T AS (SELECT SchemaName = c.TABLE_SCHEMA, TableName = c.TABLE_NAME, ColumnName = c.COLUMN_NA ...
- Android零基础入门第57节:日期选择器DatePicker和时间选择器TimePicker
原文:Android零基础入门第57节:日期选择器DatePicker和时间选择器TimePicker 在实际开发中,经常会遇见一些时间选择器.日期选择器.数字选择器等需求,那么从本期开始来学习And ...
- 高启全:长江存储自主3D NAND,DRAM研发欢迎美光一起加入(千秋大业,慢慢做)
台湾DRAM教父高启全转战大陆紫光集团操盘存储器大计划超过1年,日前晋升长江存储的执行董事.代行董事长,接受DIGITIMES独家专访公开未来规划:他指出,已齐聚500名研发人员在武汉投入3D NAN ...
- 开源玩家福利:十大Linux免费游戏
假如当你考虑从Windows平台迁移至Linux平台时,“我能在Linux平台上游戏吗?”这类疑问正困扰着你,那么对此这有一个答案就是“快去Linux平台吧!”.感谢开源组织一直以来坚持不懈为Linu ...
- Qt使用MinGW编译,如何忽略警告
Qt编译时经常出现以下警告: warning: unused parameter 'arg1' [-Wunused-parameter] warning: unused variable 'i' [- ...
- 【操作系统】关于Linux桌面操作系统
以前是Win+Ubuntu+黑苹果,周末想体验一下deepin,于是简单安装了一下,安装过程很简单,这里不再描述.安装之后,第一次打开系统,确实很惊艳,赏心悦目的操作系统. 之前用Ubuntu时候,C ...
- 关于Android开发四大组件
文章主要是讲Android开发的四大组件,本文主要分为 文章源自:http://www.cnblogs.com/pepcod/archive/2013/02/11/2937403.html 一.Act ...