BZOJ2655 Calc

参考

题意:

  给定n,m,mod,问在对mod取模的背景下,从【1,m】中选出n个数相乘可以得到的总和为多少。

思路:

  首先可以发现dp方程 ,假定dp【m】【n】表示从【1 ~ m】中选出n个数乘积的和,

那么dp【m】【n】 = dp【m-1】【n】 + dp【m-1】【n-1】*m*n。

但是这道题的m有1e9那么大,不能dp完,不过我们可以发现,dp【x】【n】 是关于x的2*n多项式,

所以,我们只要先求出0~2*n的dp值,再用拉格朗日插值法算出dp【m】【n】的即可。

#include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <iomanip>
#include <cstdlib>
#include <cstdio>
#include <string>
#include <vector>
#include <bitset>
#include <cctype>
#include <queue>
#include <cmath>
#include <list>
#include <map>
#include <set>
using namespace std;
//#pragma GCC optimize(3)
//#pragma comment(linker, "/STACK:102400000,102400000") //c++
#define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue typedef long long ll;
typedef unsigned long long ull; typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii;
typedef pair<int ,pii> p3;
//priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
//#define endl '\n' #define OKC ios::sync_with_stdio(false);cin.tie(0)
#define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行
#define REP(i , j , k) for(int i = j ; i < k ; ++i)
//priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFFLL; //
const ll nmos = 0x80000000LL; //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3fLL; // const double PI=acos(-1.0); template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
}
// #define _DEBUG; //*//
#ifdef _DEBUG
freopen("input", "r", stdin);
// freopen("output.txt", "w", stdout);
#endif
/*-----------------------show time----------------------*/ const int maxn = ;
ll dp[maxn][maxn],x[maxn],y[maxn];
int m,n,mod; ll ksm (ll a,ll b){
ll res = ;
while(b>){
if(b&) res = (res * a)%mod;
a = (a * a)%mod;
b >>= ;
}
return res;
}
ll lagerange(int k){
ll res = ;
for(int i=; i<=*n; i++){
ll s1=,s2 = ; for(int j=; j<=*n; j++){
if(i==j)continue;
s1 = 1ll*(s1 * (k - x[j] + mod)%mod)%mod;
s2 = 1ll*(s2 * ((x[i] - x[j] + mod)%mod))%mod;
}
res = (res + 1ll*s1 * ksm(s2,mod-) % mod * y[i] % mod+mod)%mod;
}
return res;
}
int main(){ scanf("%d%d%d", &m, &n, &mod);
dp[][] = ;
for(int i=; i<=*n; i++){
dp[i][] = ;
for(int j=; j<=n; j++){
dp[i][j] = 1ll*dp[i-][j-] * i % mod * j + dp[i-][j];
dp[i][j] = dp[i][j]%mod;
}
} if(m <= * n){
printf("%lld\n", dp[m][n]);
return ;
} for(int i=; i<=*n; i++) x[i] = i,y[i] = dp[i][n]; printf("%lld\n",lagerange(m)); return ;
}

BZOJ2655

BZOJ2655 Calc - dp 拉格朗日插值法的更多相关文章

  1. BZOJ2655: calc(dp 拉格朗日插值)

    题意 题目链接 Sol 首先不难想到一个dp 设\(f[i][j]\)表示选了\(i\)个严格递增的数最大的数为\(j\)的方案数 转移的时候判断一下最后一个位置是否是\(j\) \[f[i][j] ...

  2. [BZOJ2655]calc(拉格朗日插值法+DP)

    2655: calc Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 428  Solved: 246[Submit][Status][Discuss] ...

  3. [国家集训队] calc(动规+拉格朗日插值法)

    题目 P4463 [国家集训队] calc 集训队的题目真是做不动呀\(\%>\_<\%\) 朴素方程 设\(f_{i,j}\)为前\(i\)个数值域\([1,j]\),且序列递增的总贡献 ...

  4. bzoj千题计划269:bzoj2655: calc (拉格朗日插值)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2655 f[i][j] 表示[1,i]里选严格递增的j个数,序列值之和 那么ans=f[A][n] * ...

  5. 【BZOJ】2655: calc 动态规划+拉格朗日插值

    [题意]一个序列$a_1,...,a_n$合法当且仅当它们都是[1,A]中的数字且互不相同,一个序列的价值定义为数字的乘积,求所有序列的价值和.n<=500,A<=10^9,n+1< ...

  6. bzoj4559[JLoi2016]成绩比较 容斥+拉格朗日插值法

    4559: [JLoi2016]成绩比较 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 261  Solved: 165[Submit][Status ...

  7. Matlab数值计算示例: 牛顿插值法、LU分解法、拉格朗日插值法、牛顿插值法

    本文源于一次课题作业,部分自己写的,部分借用了网上的demo 牛顿迭代法(1) x=1:0.01:2; y=x.^3-x.^2+sin(x)-1; plot(x,y,'linewidth',2);gr ...

  8. 拉格朗日插值法——用Python进行数值计算

    插值法的伟大作用我就不说了.... 那么贴代码? 首先说一下下面几点: 1. 已有的数据样本被称之为 "插值节点" 2. 对于特定插值节点,它所对应的插值函数是必定存在且唯一的(关 ...

  9. CPP&MATLAB实现拉格朗日插值法

    开始学习MATLAB(R和Python先放一放...),老师推荐一本书,看完基础就是各种算法...首先是各种插值.先说拉格朗日插值法,这原理楼主完全不懂的,查的维基百科,好久才看懂.那里讲的很详细,这 ...

随机推荐

  1. Android Studio项目/Flutter 案例中Gradle报错通用解决方案(包括Unable to tunnel through proxy问题)

    目录 Step 1:修改Gradle版本为本地版本 Step 2:修改classpath为Android Studio版本 Step 3:关闭代理 Step 1:修改Gradle版本为本地版本     ...

  2. 后台post注入爆密码

    后台登陆框post注入按照注入的方式属于post,和前台搜索型post注入.文本框注入类似,由于目前主流的注 入工具除了穿山甲等较新工具以外几乎都是get注入,尤其是对于这种后台账户型post注入式无 ...

  3. 浅谈Ceph纠删码

    目  录第1章 引言 1.1 文档说明 1.2 参考文档 第2章 纠删码概念和原理 2.1 概念 2.2 原理 第3章 CEPH纠删码介绍 3.1 CEPH纠删码用途 3.2 CEPH纠删码库 3.3 ...

  4. kube-proxy源码解析

    kubernetes离线安装包,仅需三步 kube-proxy源码解析 ipvs相对于iptables模式具备较高的性能与稳定性, 本文讲以此模式的源码解析为主,如果想去了解iptables模式的原理 ...

  5. 【Java笔记】【Java核心技术卷1】chapter3 D1JavaStandard

    package chapter3;/*有包名,命令行编译javac -d . 名字.java(注意空格)运行时用java chapter3.JavaStandard*/ public/*访问修饰符*/ ...

  6. Starling 环形进度条实现

    项目初期想实现这个效果来着,查了很多资料(包括式神的<神奇的滤镜>),也没找到完美的实现方法,,当时时间紧迫,就找了传统的进度条来代替实现. 最近偶然心血来潮,查了各方面资料,终于找到实现 ...

  7. android ——Toolbar

    Toolbar是我看material design内容的第一个 官方文档:https://developer.android.com/reference/android/support/v7/widg ...

  8. 源码解读 Spring Boot Profiles

    前言 上文<一文掌握 Spring Boot Profiles> 是对 Spring Boot Profiles 的介绍和使用,因此本文将从源码角度探究 Spring Boot Profi ...

  9. 什么是Kafka?

    通过Kafka的快速入门 https://www.cnblogs.com/tree1123/p/11150927.html 能了解到Kafka的基本部署,使用,但他和其他的消息中间件有什么不同呢? K ...

  10. 洛谷 P2704 [NOI2001]炮兵阵地

    题意简述 给定一张地图,有山地H,平原P,平原可放置炮兵, 炮兵可以攻击沿横向左右各两格,沿纵向上下各两格的区域 求最多放几个炮兵,使他们两两攻击不到 题解思路 枚举第i层,第i - 1层,第i - ...