传送门

题意:

一开始有很多怪兽,每个怪兽的血量在\(1\)到\(n\)之间且各不相同,\(n\leq 10^{13}\)。

然后有\(m\)种没有出现的血量,\(m\leq 50\)。

现在有个人可以使用魔法卡片,使用一张会使得所有的怪兽掉一点血,如果有怪兽死亡,则继续施展魔法。

这个人能够获得一定的分数,分数计算如下,每一次使用卡片前,假设一个怪兽血量为\(x\),那么获得\(x^k\)的分数。\(k\)为杀死所有怪兽需要的卡片数量。

求最后总的分数。

思路:

因为\(m\)很小,那么我们可以对每次施展卡片前获得的分数单独计算,最后加起来即可。

那么这个问题的本质就是要算:

\[\sum_{i=0}^ni^k-\sum_{j=1}^ma_j^k
\]

后面一部分显然可以直接计算,那么主要问题就在于计算前面的部分。

而幂级数的形式可以直接用第二类斯特林数展开,最后问题就变为了预处理第二类斯特林数,计算可以直接\(O(k)\)计算。

展开过程详见:传送门

当然,这显然为一个与\(n\)有关的\(k+1\)次多项式,拉格朗日插值搞一搞就行。

当然,还有许多其它的方法,太菜了还不会...

斯特林数:

/*
* Author: heyuhhh
* Created Time: 2019/12/14 11:00:17
*/
#include <iostream>
#include <algorithm>
#include <cstring>
#include <vector>
#include <cmath>
#include <set>
#include <map>
#include <queue>
#include <iomanip>
#define MP make_pair
#define fi first
#define se second
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#define INF 0x3f3f3f3f
#define Local
#ifdef Local
#define dbg(args...) do { cout << #args << " -> "; err(args); } while (0)
void err() { std::cout << '\n'; }
template<typename T, typename...Args>
void err(T a, Args...args) { std::cout << a << ' '; err(args...); }
#else
#define dbg(...)
#endif
void pt() {std::cout << '\n'; }
template<typename T, typename...Args>
void pt(T a, Args...args) {std::cout << a << ' '; pt(args...); }
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
//head
const int N = 55, MOD = 1e9 + 7; ll n;
int m;
int s[N][N], fac[N], c[N];
ll a[N]; ll qpow(ll a, ll b) {
a %= MOD;
ll ans = 1;
while(b) {
if(b & 1) ans = ans * a % MOD;
a = a * a % MOD;
b >>= 1;
}
return ans;
} void init() {
s[0][0] = 1;
for(int i = 1; i < N; i++)
for(int j = 1; j <= i; j++)
s[i][j] = (1ll * s[i - 1][j] * j % MOD + s[i - 1][j - 1]) % MOD;
fac[0] = 1;
for(int i = 1; i < N; i++) fac[i] = 1ll * fac[i - 1] * i % MOD;
c[0] = 1;
} int calc(ll n, int k) {
int res = 0;
for(int i = 1; i <= k + 1; i++) c[i] = 1ll * c[i - 1] * ((n + 2 - i) % MOD) % MOD * qpow(i, MOD - 2) % MOD;
for(int i = 1; i <= k; i++) {
res = (res + 1ll * fac[i] * s[k][i] % MOD * c[i + 1] % MOD) % MOD;
}
return res;
} void run(){
cin >> n >> m;
for(int i = 1; i <= m; i++) cin >> a[i];
sort(a + 1, a + m + 1);
int ans = 0;
for(int k = 0; k <= m; k++) {
int res = calc(n - a[k], m + 1), tmp = 0;
for(int i = k + 1; i <= m; i++) {
tmp = (tmp + qpow(a[i] - a[k], m + 1)) % MOD;
}
res = (res + MOD - tmp) % MOD;
ans = (ans + res) % MOD;
}
cout << ans << '\n';
} int main() {
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cout << fixed << setprecision(20);
init();
int T; cin >> T;
while(T--) run();
return 0;
}

拉格朗日插值:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 55, MOD = 1e9 + 7;
int T;
ll a[N], fac[N];
ll qp(ll A, ll B) {
ll ans = 1;
while(B) {
if(B & 1) ans = ans * A % MOD;
A = A * A % MOD;
B >>= 1;
}
return ans ;
}
void add(ll &x, ll y, ll z) {
x += z * y % MOD;
x %= MOD;
if(x < 0) x += MOD;
}
void mul(ll &x, ll y) {
x *= y;
x %= MOD;
if(x < 0) x += MOD;
}
ll calc(ll n, ll m) {
ll ans = 0;
if(n <= m + 2) {
for(int i = 1; i <= n; i++) add(ans, qp(i, m), 1) ;
return ans ;
}
ll g = 1, y = 0;
for(int i = 1; i <= m + 2; i++) mul(g, n - i);
for(int i = 1; i <= m + 2; i++) {
ll t = qp(fac[i - 1] * fac[m + 2 - i] % MOD, MOD - 2) ;
if((m + 2 - i) & 1) t = -t;
add(y, qp(i, m), 1);
ll tmp = qp(n - i, MOD - 2);
mul(tmp, t * y % MOD * g % MOD) ;
add(ans, tmp, 1);
}
return ans;
}
int main() {
ios::sync_with_stdio(false); cin.tie(0);
fac[0] = 1;
for(int i = 1; i < N; i++) fac[i] = fac[i - 1] * i % MOD ;
cin >> T;
while(T--) {
int n, m;
cin >> n >> m;
for(int i = 1; i <= m; i++) cin >> a[i];
sort(a + 1, a + m + 1) ;
ll ans = 0;
for(int i = 0; i <= m; i++) {
add(ans, calc(n - a[i], m + 1), 1);
for(int j = i + 1; j <= m; j++)
add(ans, qp(a[j] - a[i], m + 1), -1) ;
}
cout << ans << '\n';
}
return 0;
}

【bzoj5339】[TJOI2018]教科书般的亵渎(拉格朗日插值/第二类斯特林数)的更多相关文章

  1. BZOJ.5339.[TJOI2018]教科书般的亵渎(拉格朗日插值) & 拉格朗日插值学习笔记

    BZOJ 洛谷 题意的一点说明: \(k\)次方这个\(k\)是固定的,也就是最初需要多少张亵渎,每次不会改变: 因某个怪物死亡引发的亵渎不会计分. 不难发现当前所需的张数是空格数+1,即\(m+1\ ...

  2. 洛谷P4593 [TJOI2018]教科书般的亵渎(拉格朗日插值)

    题意 题目链接 Sol 打出暴力不难发现时间复杂度的瓶颈在于求\(\sum_{i = 1}^n i^k\) 老祖宗告诉我们,这东西是个\(k\)次多项式,插一插就行了 上面的是\(O(Tk^2)\)的 ...

  3. [BZOJ5339] [TJOI2018]教科书般的亵渎

    题目链接 BZOJ题面. 洛谷题面. Solution 随便推一推,可以发现瓶颈在求\(\sum_{i=1}^n i^k\),关于这个可以看看拉格朗日插值法. 复杂度\(O(Tm^2)\). #inc ...

  4. 【BZOJ5339】[TJOI2018]教科书般的亵渎(斯特林数)

    [BZOJ5339][TJOI2018]教科书般的亵渎(斯特林数) 题面 BZOJ 洛谷 题解 显然交亵渎的次数是\(m+1\). 那么这题的本质就是让你求\(\sum_{i=1}^n i^{m+1} ...

  5. 洛谷 P4593 [TJOI2018]教科书般的亵渎

    洛谷 P4593 [TJOI2018]教科书般的亵渎 神仙伯努利数...网上一堆关于伯努利数的东西但是没有证明,所以只好记结论了? 题目本质要求\(\sum_{i=1}^{n}i^k\) 伯努利数,\ ...

  6. Luogu P4593 [TJOI2018]教科书般的亵渎

    亵渎终于离开标准了,然而铺场快攻也变少了 给一个大力枚举(无任何性质)+艹出自然数幂和的方法,但是复杂度极限是\(O(k^4)\)的,不过跑的好快233 首先简单数学分析可以得出\(k=m+1\),因 ...

  7. 51nod1847 奇怪的数学题 (Min_25筛+第二类斯特林数)

    link \(\sum_{i=1}^n\sum_{j=1}^n\mathrm{sgcd}(i,j)^k=\sum_{p=1}^ns(p)^k\sum_{i=1}^n\sum_{j=1}^n[\gcd( ...

  8. 国家集训队 Crash 的文明世界(第二类斯特林数+换根dp)

    题意 ​ 题目链接:https://www.luogu.org/problem/P4827 ​ 给定一棵 \(n\) 个节点的树和一个常数 \(k\) ,对于树上的每一个节点 \(i\) ,求出 \( ...

  9. 【BZOJ5093】图的价值(第二类斯特林数,组合数学,NTT)

    [BZOJ5093]图的价值(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 单独考虑每一个点的贡献: 因为不知道它连了几条边,所以枚举一下 \[\sum_{i=0}^{n-1}C_{n-1 ...

随机推荐

  1. 小程序 - 解决IOS端使用css滤镜渲染出现异常

    在页面渲染时,GPU默认不会开启.当css样式中出现某些规则时,就会开启GPU加速,让动画运行的更加流畅,最显著的象征就是元素的3D变换. 这些就是我们通常所说的css硬件加速,但我们有时候并不需要用 ...

  2. Python3 网络编程基础1

    目录 开发架构 C/S架构 B/S架构 OSI模型 应用层 表示层 会话层 传输层 网络层 数据链路层 物理层 TCP协议 socket 开发架构 C/S架构 client 和 server, 既客户 ...

  3. nyoj 737 石子合并(区间DP)

    737-石子合并(一) 内存限制:64MB 时间限制:1000ms 特判: No通过数:28 提交数:35 难度:3 题目描述:     有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为 ...

  4. Python基础-day01-7

    程序执行原理(科普) 目标 计算机中的 三大件 程序执行的原理 程序的作用 01. 计算机中的三大件 计算机中包含有较多的硬件,但是一个程序要运行,有 三个 核心的硬件,分别是: CPU 中央处理器, ...

  5. Redis来啦~~

    一. 先聊点别的 1. sql & nosql sql指关系型数据库,如Oracle,MySQL等,nosql泛指非关系型数据库,如MongoDB,Redis等:SQL数据存在特定结构的表中, ...

  6. Python爬虫实战:爬取腾讯视频的评论

    前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者: 易某某 PS:如有需要Python学习资料的小伙伴可以加点击下方链 ...

  7. Nginx入门简介和反向代理、负载均衡、动静分离理解

    场景 Nginx简介 Nginx ("engine x")是一个高性能的 HTTP 和反向代理服务器 特点是占有内存少,并发能力强,事实上 nginx 的并发能力确实在同类型的网页 ...

  8. UiPath Platform注册 登录 及 访问 Orchestrator

    相关步骤: 1.https://platform.uipath.com/portal_/cloudrpa 注册 及 登录 2. Login后 通过Services 连接 访问 UiPath Orche ...

  9. 使用.NET Core 构建现代化的桌面应用

    我们今天要聊的内容主要桌面开发四个方面:Windows平台..NET Core 3 平台上的WPF,Winform, 应用打包解决方案 MSIX 和 XAML 群岛访问原来UWP的控件,让我们的应用程 ...

  10. TI的32位定点DSP库IQmath在H7和F4上的移植和使用

    说明: 1.最近在制作第2版DSP教程,除了ARM家的,这次重点了解下载TI的DSP库,特此移植了一个TI的IQmath. 2.初次使用这个定点库,感觉在各种Q格式的互转,Q格式数值和浮点数的互转处理 ...