版本问题---keras和tensorflow的版本对应关系
keras和tensorflow的版本对应关系,可参考:
Framework | Env name (--env parameter) | Description | Docker Image | Packages and Nvidia Settings |
---|---|---|---|---|
TensorFlow 1.14 | tensorflow-1.14 | TensorFlow 1.14.0 + Keras 2.2.5 on Python 3.6. | floydhub/tensorflow | TensorFlow-1.14 |
TensorFlow 1.13 | tensorflow-1.13 | TensorFlow 1.13.0 + Keras 2.2.4 on Python 3.6. | floydhub/tensorflow | TensorFlow-1.13 |
TensorFlow 1.12 | tensorflow-1.12 | TensorFlow 1.12.0 + Keras 2.2.4 on Python 3.6. | floydhub/tensorflow | TensorFlow-1.12 |
tensorflow-1.12:py2 | TensorFlow 1.12.0 + Keras 2.2.4 on Python 2. | floydhub/tensorflow | ||
TensorFlow 1.11 | tensorflow-1.11 | TensorFlow 1.11.0 + Keras 2.2.4 on Python 3.6. | floydhub/tensorflow | TensorFlow-1.11 |
tensorflow-1.11:py2 | TensorFlow 1.11.0 + Keras 2.2.4 on Python 2. | floydhub/tensorflow | ||
TensorFlow 1.10 | tensorflow-1.10 | TensorFlow 1.10.0 + Keras 2.2.0 on Python 3.6. | floydhub/tensorflow | TensorFlow-1.10 |
tensorflow-1.10:py2 | TensorFlow 1.10.0 + Keras 2.2.0 on Python 2. | floydhub/tensorflow | ||
TensorFlow 1.9 | tensorflow-1.9 | TensorFlow 1.9.0 + Keras 2.2.0 on Python 3.6. | floydhub/tensorflow | TensorFlow-1.9 |
tensorflow-1.9:py2 | TensorFlow 1.9.0 + Keras 2.2.0 on Python 2. | floydhub/tensorflow | ||
TensorFlow 1.8 | tensorflow-1.8 | TensorFlow 1.8.0 + Keras 2.1.6 on Python 3.6. | floydhub/tensorflow | TensorFlow-1.8 |
tensorflow-1.8:py2 | TensorFlow 1.8.0 + Keras 2.1.6 on Python 2. | floydhub/tensorflow | ||
TensorFlow 1.7 | tensorflow-1.7 | TensorFlow 1.7.0 + Keras 2.1.6 on Python 3.6. | floydhub/tensorflow | TensorFlow-1.7 |
tensorflow-1.7:py2 | TensorFlow 1.7.0 + Keras 2.1.6 on Python 2. | floydhub/tensorflow | ||
TensorFlow 1.5 | tensorflow-1.5 | TensorFlow 1.5.0 + Keras 2.1.6 on Python 3.6. | floydhub/tensorflow | TensorFlow-1.5 |
tensorflow-1.5:py2 | TensorFlow 1.5.0 + Keras 2.1.6 on Python 2. | floydhub/tensorflow | ||
TensorFlow 1.4 | tensorflow-1.4 | TensorFlow 1.4.0 + Keras 2.0.8 on Python 3.6. | floydhub/tensorflow | |
tensorflow-1.4:py2 | TensorFlow 1.4.0 + Keras 2.0.8 on Python 2. | floydhub/tensorflow | ||
TensorFlow 1.3 | tensorflow-1.3 | TensorFlow 1.3.0 + Keras 2.0.6 on Python 3.6. | floydhub/tensorflow | |
tensorflow-1.3:py2 | TensorFlow 1.3.0 + Keras 2.0.6 on Python 2. | floydhub/tensorflow | ||
TensorFlow 1.2 | tensorflow-1.2 | TensorFlow 1.2.0 + Keras 2.0.6 on Python 3.5. | floydhub/tensorflow | |
tensorflow-1.2:py2 | TensorFlow 1.2.0 + Keras 2.0.6 on Python 2. | floydhub/tensorflow | ||
TensorFlow 1.1 | tensorflow | TensorFlow 1.1.0 + Keras 2.0.6 on Python 3.5. | floydhub/tensorflow | |
tensorflow:py2 | TensorFlow 1.1.0 + Keras 2.0.6 on Python 2. | floydhub/tensorflow | ||
TensorFlow 1.0 | tensorflow-1.0 | TensorFlow 1.0.0 + Keras 2.0.6 on Python 3.5. | floydhub/tensorflow | |
tensorflow-1.0:py2 | TensorFlow 1.0.0 + Keras 2.0.6 on Python 2. | floydhub/tensorflow | ||
TensorFlow 0.12 | tensorflow-0.12 | TensorFlow 0.12.1 + Keras 1.2.2 on Python 3.5. | floydhub/tensorflow | |
tensorflow-0.12:py2 | TensorFlow 0.12.1 + Keras 1.2.2 on Python 2. | floydhub/tensorflow | ||
PyTorch 1.1 | pytorch-1.1 | PyTorch 1.1.0 + fastai 1.0.57 on Python 3.6. | floydhub/pytorch | PyTorch-1.1 |
PyTorch 1.0 | pytorch-1.0 | PyTorch 1.0.0 + fastai 1.0.51 on Python 3.6. | floydhub/pytorch | PyTorch-1.0 |
pytorch-1.0:py2 | PyTorch 1.0.0 on Python 2. | floydhub/pytorch | ||
PyTorch 0.4 | pytorch-0.4 | PyTorch 0.4.1 on Python 3.6. | floydhub/pytorch | PyTorch-0.4 |
pytorch-0.4:py2 | PyTorch 0.4.1 on Python 2. | floydhub/pytorch | ||
PyTorch 0.3 | pytorch-0.3 | PyTorch 0.3.1 on Python 3.6. | floydhub/pytorch | PyTorch-0.3 |
pytorch-0.3:py2 | PyTorch 0.3.1 on Python 2. | floydhub/pytorch | ||
PyTorch 0.2 | pytorch-0.2 | PyTorch 0.2.0 on Python 3.5 | floydhub/pytorch | |
pytorch-0.2:py2 | PyTorch 0.2.0 on Python 2. | floydhub/pytorch | ||
PyTorch 0.1 | pytorch-0.1 | PyTorch 0.1.12 on Python 3. | floydhub/pytorch | |
pytorch-0.1:py2 | PyTorch 0.1.12 on Python 2. | floydhub/pytorch | ||
Theano 0.9 | theano-0.9 | Theano rel-0.8.2 + Keras 2.0.3 on Python3.5. | floydhub/theano | |
theano-0.9:py2 | Theano rel-0.8.2 + Keras 2.0.3 on Python2. | floydhub/theano | ||
Caffe | caffe | Caffe rc4 on Python3.5. | floydhub/caffe | |
caffe:py2 | Caffe rc4 on Python2. | floydhub/caffe | ||
Torch | torch | Torch 7 with Python 3 env. | floydhub/torch | |
torch:py2 | Torch 7 with Python 2 env. | floydhub/torch | ||
Chainer 1.23 | chainer-1.23 | Chainer 1.23.0 on Python 3. | floydhub/chainer | |
chainer-1.23:py2 | Chainer 1.23.0 on Python 2. | floydhub/chainer | ||
Chainer 2.0 | chainer-2.0 | Chainer 1.23.0 on Python 3. | floydhub/chainer | |
chainer-2.0:py2 | Chainer 1.23.0 on Python 2. | floydhub/chainer | ||
MxNet 1.0 | mxnet | MxNet 1.0.0 on Python 3.6. | floydhub/mxnet | |
mxnet:py2 | MxNet 1.0.0 on Python 2. | floydhub/mxnet |
@https://docs.floydhub.com/guides/environments/
版本问题---keras和tensorflow的版本对应关系的更多相关文章
- 版本问题---cuda和tensorflow的版本对应关系
cuda和tensorflow的版本有对应关系 https://tensorflow.google.cn/install/source#linux
- Win10上安装Keras 和 TensorFlow(GPU版本)
一. 安装环境 Windows 10 64bit 家庭版 GPU: GeForce GTX1070 Python: 3.5 CUDA: CUDA Toolkit 8.0 GA1 (Sept 2016 ...
- tensorflow各个版本的CUDA以及Cudnn版本对应关系
概述,需要注意以下几个问题: (1)NVIDIA的显卡驱动程序和CUDA完全是两个不同的概念哦!CUDA是NVIDIA推出的用于自家GPU的并行计算框架,也就是说CUDA只能在NVIDIA的GPU上运 ...
- 版本问题---Bazel与tensorflow的对应关系
源码安装tf的时候,会用到Bazel,版本不对应,后面会引起好多麻烦. echo "deb [arch=amd64] http://storage.googleapis.com/bazel- ...
- 【转】Ubuntu 16.04安装配置TensorFlow GPU版本
之前摸爬滚打总是各种坑,今天参考这篇文章终于解决了,甚是鸡冻\(≧▽≦)/,电脑不知道怎么的,安装不了16.04,就安装15.10再升级到16.04 requirements: Ubuntu 16.0 ...
- tensorflow不同版本安装与升级/降级
https://blog.csdn.net/junmuzi/article/details/78357371 首先,可以安装一个anaconda. 然后使用python的pip可以安装特定版本的ten ...
- 通过Anaconda在Ubuntu16.04上安装 TensorFlow(GPU版本)
一. 安装环境 Ubuntu16.04.3 LST GPU: GeForce GTX1070 Python: 3.5 CUDA Toolkit 8.0 GA1 (Sept 2016) cuDNN v6 ...
- tensorflow降低版本
tensorflow降低版本: pip install tensorflow==1.2.0 查看版本: import tensorflow as tf print(tf.__version__)
- Windows7 64bits下安装TensorFlow CPU版本(图文详解)
不多说,直接上干货! Installing TensorFlow on Windows的官网 https://www.tensorflow.org/install/install_windows 首先 ...
随机推荐
- .NET配置引用程序集的路径(分离exe和dll)
按照引用程序集路径的不同,程序集DLL分为两类: 1)全局DLL(在GAC中注册,GAC——全局程序集缓存),有关GAC的详细资料可以参考一下链接: http://dddspace.com/2011/ ...
- StringTable
首先看这样一个面试题 // StringTable [ "a", "b" ,"ab" ] hashtable 结构,不能扩容 public ...
- Springboot Actuator之五:Springboot中的HealthAggregator、新增自定义Status
springboot的actuator内置了/health的endpoint,很方便地规范了每个服务的健康状况的api,而且HealthIndicator可以自己去扩展,增加相关依赖服务的健康状态,非 ...
- Npoi 的使用
npoi这个office写入,我个人有点不方便,但是因为需要使用所以不得不去用了. 原因: 1. 没文档 2. 网上的案例版本不同 3. 对于复杂列不好做处理 跟网上其他工具的对比,好处就是不需要依赖 ...
- Centos7通过yum安装jdk8
1.Centos7通过yum安装jdk8 2.Centos7通过yum安装jdk8
- 基准测试工具:Wrk初识
最近和同事聊起常用的一些压测工具,谈到了Apache ab.阿里云的PTS.Jmeter.Locust以及wrk各自的一些优缺点和适用的场景类型. 这篇博客,简单介绍下HTTP基准测试工具wrk的基本 ...
- 关于BASE 24 ,BASE 64原理以及实现程序
关于BASE 24 ,BASE 64原理以及实现程序 来源 https://wangye.org/blog/archives/5/ 可能很多人听说过Base64编码,很少有人听说过Base24编码,B ...
- xcode模拟器使用常用的命令。
1.查看模拟器的udid用的 xcrun instruments -s xcrun simctl list 2.启动这个模拟器: xcrun instruments -w 'B39EC2FF-8A8B ...
- python爬虫---js加密和混淆,scrapy框架的使用.
python爬虫---js加密和混淆,scrapy框架的使用. 一丶js加密和js混淆 js加密 对js源码进行加密,从而保护js代码不被黑客窃取.(一般加密和解密的方法都在前端) http:// ...
- [摘录]flutter打包后无法访问接口
打开文件{{flutterPorject}}\android\app\src\main\AndroidManifest.xml这个文件增加权限信息: <uses-permission andro ...