Topomap: Topological Mapping and Navigation Based on Visual SLAM Maps

Fabian Bl¨ochliger, Marius Fehr, Marcin Dymczyk, Thomas Schneider and Roland Siegwart

Topomap:基于Visual SLAM地图的拓扑映射和导航

https://arxiv.org/pdf/1709.05533.pdf

Abstract—Visual robot navigation within large-scale, semistructured environments deals with various challenges such as computation intensive path planning algorithms or insufficient knowledge about traversable spaces. Moreover, many state of-the-art navigation approaches only operate locally instead of gaining a more conceptual understanding of the planning objective. This limits the complexity of tasks a robot can accomplish and makes it harder to deal with uncertainties that are present in the context of real-time robotics applications.

大规模半结构化环境中的视觉机器人导航处理各种挑战,例如计算密集型路径规划算法或关于可穿越空间的不充分知识。此外,许多最先进的导航方法仅在本地运行,而不是对规划目标进行更概念性的理解。这限制了机器人可以完成的任务的复杂性,并且使得处理实时机器人应用中存在的不确定性变得更加困难。

In this work, we present Topomap, a framework which simplifies the navigation task by providing a map to the robot which is tailored for path planning use. This novel approach transforms a sparse feature-based map from a visual Simultaneous Localization And Mapping (SLAM) system into a three-dimensional topological map. This is done in two steps. First, we extract occupancy information directly from the noisy sparse point cloud. Then, we create a set of convex free-space clusters, which are the vertices of the topological map. We show that this representation improves the efficiency of global planning, and we provide a complete derivation of our algorithm. Planning experiments on real world datasets demonstrate that we achieve similar performance as RRT* with significantly lower computation times and storage requirements. Finally, we test our algorithm on a mobile robotic platform to prove its advantages.

在这项工作中,我们介绍了Topomap,这是一个简化导航任务的框架,它为机器人提供了一个专为路径规划使用而定制的地图。这种新颖的方法将稀疏的基于特征的地图从视觉同时定位和建图(SLAM)系统转换为三维拓扑地图。这分两步完成。 首先,我们直接从嘈杂的稀疏点云中提取占用信息。然后,我们创建一组凸自由空间簇,它们是拓扑图的顶点。我们证明了这种表示提高了全局规划的效率,并且我们提供了算法的完整推导。在现实世界数据集上进行规划实验表明,我们实现了与RRT *类似的性能,同时显着降低了计算时间和存储要求。最后,我们在移动机器人平台上测试我们的算法,以证明其优势。

泡泡一分钟:Topomap: Topological Mapping and Navigation Based on Visual SLAM Maps的更多相关文章

  1. 泡泡一分钟:Collaborative Mapping with Pose Uncertainties using different Radio Frequencies and Communication Modules

    张宁 Collaborative Mapping with Pose Uncertainties using different Radio Frequencies and Communication ...

  2. 泡泡一分钟:Tightly-Coupled Aided Inertial Navigation with Point and Plane Features

    Tightly-Coupled Aided Inertial Navigation with Point and Plane Features 具有点和平面特征的紧密耦合辅助惯性导航 Yulin Ya ...

  3. 泡泡一分钟:Semantic Labeling of Indoor Environments from 3D RGB Maps

    张宁 Semantic Labeling of Indoor Environments from 3D RGB Maps Manuel Brucker,  Maximilian Durner,  Ra ...

  4. 泡泡一分钟:GEN-SLAM - Generative Modeling for Monocular Simultaneous Localization and Mapping

    张宁  GEN-SLAM - Generative Modeling for Monocular Simultaneous Localization and Mapping GEN-SLAM  - 单 ...

  5. 泡泡一分钟:Semi-Dense Visual-Inertial Odometry and Mapping for Quadrotors with SWAP Constraints

    张宁 Semi-Dense Visual-Inertial Odometry and Mapping for Quadrotors with SWAP Constraints 具有SWAP约束的四旋翼 ...

  6. 泡泡一分钟:Perception-aware Receding Horizon Navigation for MAVs

    作为在空中抛掷四旋翼飞行器后恢复的第一步,它需要检测它使用其加速度计的发射.理想的情况下,在飞行中,加速度计理想地仅测量由于施加的转子推力引起的加速度,即.因此,当四旋翼飞行器发射时,我们可以检测到测 ...

  7. 泡泡一分钟:Aided Inertial Navigation: Unified Feature Representations and Observability Analysis

    http://udel.edu/~yuyang/downloads/tr_observabilityII.pdf Aided Inertial Navigation: Unified Feature R ...

  8. 泡泡一分钟:Towards real-time unsupervised monocular depth estimation on CPU

    Towards real-time unsupervised monocular depth estimation on CPU Matteo Poggi , Filippo Aleotti , Fa ...

  9. 泡泡一分钟:Stabilize an Unsupervised Feature Learning for LiDAR-based Place Recognition

    Stabilize an Unsupervised Feature Learning for LiDAR-based Place Recognition Peng Yin, Lingyun Xu, Z ...

随机推荐

  1. LGOJP3952 时间复杂度

    题目链接 题目链接 题解 细心模拟题.最主要就是要细心,并且注释不要嫌多&码风要好,心态要好.思路没捋清晰之前不要动手写代码. 对于\(ERR\),用栈来存放当前的数据.然后用个\(vis\) ...

  2. 《CoderXiaoban》第八次团队作业:Alpha冲刺1

    项目 内容 这个作业属于哪个课程 任课教师博客主页链接 这个作业的要求在哪里 实验十二 团队作业8:软件测试与ALPHA冲刺 团队名称 Coderxiaoban团队 作业学习目标 (1)掌握软件测试基 ...

  3. 织梦DedeCMS会员空间内的文章列表无法分页的解决方法

    DedeCMS 5.7会员空间的文章列表分页显示不正常,总是显示0页0条记录错误.下面告诉大家如何解决这个问题: 找到并打开include/arc.memberlistview.class.php文件 ...

  4. LightOJ - 1282 - Leading and Trailing(数学技巧,快速幂取余)

    链接: https://vjudge.net/problem/LightOJ-1282 题意: You are given two integers: n and k, your task is to ...

  5. Backpack IV

    Description Given an integer array nums[] which contains n unique positive numbers, num[i] indicate ...

  6. java之比较器

    java中的比较器有两种: 1.实体类实现Comparable接口,并实现其中的compareTo方法 2.在外部定义实现Comparator接口的比较器类,并实现其中的compare方法 Compa ...

  7. hibernate之关联关系一对多

    什么是关联(association) 关联指的是类之间的引用关系.如果类A与类B关联,那么被引用的类B将被定义为类A的属性.例如:  public class B{        private St ...

  8. 比较ping,tracert和pathping等命令之间的关系

    无论你是一个网络维护人员,还是正在学习TCP/IP协议,了解和掌握一些常用的网络测试命令将会有助于您更快地检测到网络故障所在,同时也会有助你您了解网络通信的内幕. 下面我们逐步介绍几个常用的命令: 1 ...

  9. Acwing P283 多边形 题解

    Analysis 总体来说是一个区间DP 此题首先是一个环,要你进行删边操作,剩下的在经过运算得到一个最大值 注意事项: 1.删去一条边,剩下的构成一条线,相当于求此的最大值,经典区间DP该有的样子: ...

  10. Kubernetes 学习16 RBAC

    一.概述 1.前面讲过,kubernetes的授权也是基于插件来实现而且用户访问时某一次操作经由某一授权插件检查能通过后就不再经由其它插件检查.然后由准入控制插件再做进一步后续的准入控制检查.那么在他 ...