Topomap: Topological Mapping and Navigation Based on Visual SLAM Maps

Fabian Bl¨ochliger, Marius Fehr, Marcin Dymczyk, Thomas Schneider and Roland Siegwart

Topomap:基于Visual SLAM地图的拓扑映射和导航

https://arxiv.org/pdf/1709.05533.pdf

Abstract—Visual robot navigation within large-scale, semistructured environments deals with various challenges such as computation intensive path planning algorithms or insufficient knowledge about traversable spaces. Moreover, many state of-the-art navigation approaches only operate locally instead of gaining a more conceptual understanding of the planning objective. This limits the complexity of tasks a robot can accomplish and makes it harder to deal with uncertainties that are present in the context of real-time robotics applications.

大规模半结构化环境中的视觉机器人导航处理各种挑战,例如计算密集型路径规划算法或关于可穿越空间的不充分知识。此外,许多最先进的导航方法仅在本地运行,而不是对规划目标进行更概念性的理解。这限制了机器人可以完成的任务的复杂性,并且使得处理实时机器人应用中存在的不确定性变得更加困难。

In this work, we present Topomap, a framework which simplifies the navigation task by providing a map to the robot which is tailored for path planning use. This novel approach transforms a sparse feature-based map from a visual Simultaneous Localization And Mapping (SLAM) system into a three-dimensional topological map. This is done in two steps. First, we extract occupancy information directly from the noisy sparse point cloud. Then, we create a set of convex free-space clusters, which are the vertices of the topological map. We show that this representation improves the efficiency of global planning, and we provide a complete derivation of our algorithm. Planning experiments on real world datasets demonstrate that we achieve similar performance as RRT* with significantly lower computation times and storage requirements. Finally, we test our algorithm on a mobile robotic platform to prove its advantages.

在这项工作中,我们介绍了Topomap,这是一个简化导航任务的框架,它为机器人提供了一个专为路径规划使用而定制的地图。这种新颖的方法将稀疏的基于特征的地图从视觉同时定位和建图(SLAM)系统转换为三维拓扑地图。这分两步完成。 首先,我们直接从嘈杂的稀疏点云中提取占用信息。然后,我们创建一组凸自由空间簇,它们是拓扑图的顶点。我们证明了这种表示提高了全局规划的效率,并且我们提供了算法的完整推导。在现实世界数据集上进行规划实验表明,我们实现了与RRT *类似的性能,同时显着降低了计算时间和存储要求。最后,我们在移动机器人平台上测试我们的算法,以证明其优势。

泡泡一分钟:Topomap: Topological Mapping and Navigation Based on Visual SLAM Maps的更多相关文章

  1. 泡泡一分钟:Collaborative Mapping with Pose Uncertainties using different Radio Frequencies and Communication Modules

    张宁 Collaborative Mapping with Pose Uncertainties using different Radio Frequencies and Communication ...

  2. 泡泡一分钟:Tightly-Coupled Aided Inertial Navigation with Point and Plane Features

    Tightly-Coupled Aided Inertial Navigation with Point and Plane Features 具有点和平面特征的紧密耦合辅助惯性导航 Yulin Ya ...

  3. 泡泡一分钟:Semantic Labeling of Indoor Environments from 3D RGB Maps

    张宁 Semantic Labeling of Indoor Environments from 3D RGB Maps Manuel Brucker,  Maximilian Durner,  Ra ...

  4. 泡泡一分钟:GEN-SLAM - Generative Modeling for Monocular Simultaneous Localization and Mapping

    张宁  GEN-SLAM - Generative Modeling for Monocular Simultaneous Localization and Mapping GEN-SLAM  - 单 ...

  5. 泡泡一分钟:Semi-Dense Visual-Inertial Odometry and Mapping for Quadrotors with SWAP Constraints

    张宁 Semi-Dense Visual-Inertial Odometry and Mapping for Quadrotors with SWAP Constraints 具有SWAP约束的四旋翼 ...

  6. 泡泡一分钟:Perception-aware Receding Horizon Navigation for MAVs

    作为在空中抛掷四旋翼飞行器后恢复的第一步,它需要检测它使用其加速度计的发射.理想的情况下,在飞行中,加速度计理想地仅测量由于施加的转子推力引起的加速度,即.因此,当四旋翼飞行器发射时,我们可以检测到测 ...

  7. 泡泡一分钟:Aided Inertial Navigation: Unified Feature Representations and Observability Analysis

    http://udel.edu/~yuyang/downloads/tr_observabilityII.pdf Aided Inertial Navigation: Unified Feature R ...

  8. 泡泡一分钟:Towards real-time unsupervised monocular depth estimation on CPU

    Towards real-time unsupervised monocular depth estimation on CPU Matteo Poggi , Filippo Aleotti , Fa ...

  9. 泡泡一分钟:Stabilize an Unsupervised Feature Learning for LiDAR-based Place Recognition

    Stabilize an Unsupervised Feature Learning for LiDAR-based Place Recognition Peng Yin, Lingyun Xu, Z ...

随机推荐

  1. 题解 洛谷P4302 【[SCOI2003]字符串折叠】

    一眼区间\(dp\),但蒟蒻的我还是调了好久\(qwq\) [状态设置] 设\(f[i][j]\)为子串\([i,j]\)的最短折叠 最后答案为\(f[1][n]\) 废话 [初始化] \(1\) 首 ...

  2. szwyadmin程序漏洞拿shell【方法笔记】

    我们在Google中搜索关键词 关键字:inurl:szwyadmin/login.asp 任意打开一个搜索结果,打开登录界面后在地址栏中输入下面的代码: 代码: javascript:alert(d ...

  3. 神经网络(8)---如何求神经网络的参数:cost function的表达

    两种分类问题: binary & multi-class 下面的是两种类型的分类问题(一种是binary classification,一种是multi-class classificatio ...

  4. Linux 安装网络yum地址

    rpm -Uhv http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm   rpm -Uhv http:/ ...

  5. C++面向对象程序设计第三章习题答案解析

    整理一下自己写的作业,供考试前复习用,哈哈 进入正题!!! 题目: 2.分析下面的程序,写出其运行时的输出结果 这里就不展示课本源代码,直接给出修改后的代码,错误部分代码已给出具体的注释 #inclu ...

  6. Java获取视频的大小、时长

    前端上传视频之后,根据上传的视频文件获取视频的大小和时长 1.获取视频时长 private String ReadVideoTime(File source) { Encoder encoder = ...

  7. placeholder这个属性 input

    input是一个很常见的标签,大家使用的也很常见,但是我在具体的工作中发现要想完美的使用这个标签还是任重而道远,下面是我碰到的几个问题. 1.我们在使用这个标签的时候会习惯的加上placeholder ...

  8. k8s-yaml

    apiVersion: v1 #指定api版本,此值必须在kubectl apiversion中 kind: Pod #指定创建资源的角色/类型 metadata: #资源的元数据/属性 name: ...

  9. XAMPP环境搭建WordPress,DVWA

    本周学习内容: 1.学习MySQL数据库.Linux.PHP开发: 2.复习等级培训内容: 3.使用xampp环境安装WordPress,学习WordPress数据库表的设计: 4.使用xampp安装 ...

  10. 部署Django到云服务器(centos+nginx+mysql+uwsgi+python3)【操作篇(2)】

    接上篇操作篇(1):https://blog.csdn.net/jacky_zhuyuanlu/article/details/82880612 (七)创建Django项目 (1)建立文件夹,存放网站 ...