【转载】 十图详解tensorflow数据读取机制(附代码)
原文地址:
https://zhuanlan.zhihu.com/p/27238630

------------------------------------------------------------------------------------------------------

在学习tensorflow的过程中,有很多小伙伴反映读取数据这一块很难理解。确实这一块官方的教程比较简略,网上也找不到什么合适的学习材料。今天这篇文章就以图片的形式,用最简单的语言,为大家详细解释一下tensorflow的数据读取机制,文章的最后还会给出实战代码以供参考。
一、tensorflow读取机制图解
首先需要思考的一个问题是,什么是数据读取?以图像数据为例,读取数据的过程可以用下图来表示:

假设我们的硬盘中有一个图片数据集0001.jpg,0002.jpg,0003.jpg……我们只需要把它们读取到内存中,然后提供给GPU或是CPU进行计算就可以了。这听起来很容易,但事实远没有那么简单。事实上,我们必须要把数据先读入后才能进行计算,假设读入用时0.1s,计算用时0.9s,那么就意味着每过1s,GPU都会有0.1s无事可做,这就大大降低了运算的效率。
如何解决这个问题?方法就是将读入数据和计算分别放在两个线程中,将数据读入内存的一个队列,如下图所示:

读取线程源源不断地将文件系统中的图片读入到一个内存的队列中,而负责计算的是另一个线程,计算需要数据时,直接从内存队列中取就可以了。这样就可以解决GPU因为IO而空闲的问题!
而在tensorflow中,为了方便管理,在内存队列前又添加了一层所谓的“文件名队列”。
为什么要添加这一层文件名队列?我们首先得了解机器学习中的一个概念:epoch。对于一个数据集来讲,运行一个epoch就是将这个数据集中的图片全部计算一遍。如一个数据集中有三张图片A.jpg、B.jpg、C.jpg,那么跑一个epoch就是指对A、B、C三张图片都计算了一遍。两个epoch就是指先对A、B、C各计算一遍,然后再全部计算一遍,也就是说每张图片都计算了两遍。
tensorflow使用文件名队列+内存队列 双队列的形式读入文件,可以很好地管理epoch。下面我们用图片的形式来说明这个机制的运行方式。如下图,还是以数据集A.jpg, B.jpg, C.jpg为例,假定我们要跑一个epoch,那么我们就在文件名队列中把A、B、C各放入一次,并在之后标注队列结束。

程序运行后,内存队列首先读入A(此时A从文件名队列中出队):

再依次读入B和C:


此时,如果再尝试读入,系统由于检测到了“结束”,就会自动抛出一个异常(OutOfRange)。外部捕捉到这个异常后就可以结束程序了。这就是tensorflow中读取数据的基本机制。 如果我们要跑2个epoch而不是1个epoch,那只要在文件名队列中将A、B、C依次放入两次再标记结束就可以了。
二、tensorflow读取数据机制的对应函数
如何在tensorflow中创建上述的两个队列呢?
对于文件名队列,我们使用 tf.train.string_input_producer 函数。这个函数需要传入一个文件名list,系统会自动将它转为一个文件名队列。
此外 tf.train.string_input_producer 还有两个重要的参数,一个是num_epochs,它就是我们上文中提到的epoch数。另外一个就是shuffle,shuffle是指在一个epoch内文件的顺序是否被打乱。若设置shuffle=False,如下图,每个epoch内,数据还是按照A、B、C的顺序进入文件名队列,这个顺序不会改变:

如果设置shuffle=True,那么在一个epoch内,数据的前后顺序就会被打乱,如下图所示:

在tensorflow中,内存队列不需要我们自己建立,我们只需要使用reader对象从文件名队列中读取数据就可以了,具体实现可以参考下面的实战代码。
除了tf.train.string_input_producer外,我们还要额外介绍一个函数:tf.train.start_queue_runners 。初学者会经常在代码中看到这个函数,但往往很难理解它的用处,在这里,有了上面的铺垫后,我们就可以解释这个函数的作用了。
在我们使用 tf.train.string_input_producer 创建文件名队列后,整个系统其实还是处于“停滞状态”的,也就是说,我们文件名并没有真正被加入到队列中(如下图所示)。此时如果我们开始计算,因为内存队列中什么也没有,计算单元就会一直等待,导致整个系统被阻塞。

而使用tf.train.start_queue_runners之后,才会启动填充队列的线程,这时系统就不再“停滞”。此后计算单元就可以拿到数据并进行计算,整个程序也就跑起来了,这就是函数tf.train.start_queue_runners的用处。

三、实战代码

对应的代码如下:
# 导入tensorflow
import tensorflow as tf # 新建一个Session
with tf.Session() as sess:
# 我们要读三幅图片A.jpg, B.jpg, C.jpg
filename = ['A.jpg', 'B.jpg', 'C.jpg']
# string_input_producer会产生一个文件名队列
filename_queue = tf.train.string_input_producer(filename, shuffle=False, num_epochs=5)
# reader从文件名队列中读数据。对应的方法是reader.read
reader = tf.WholeFileReader()
key, value = reader.read(filename_queue)
# tf.train.string_input_producer定义了一个epoch变量,要对它进行初始化
tf.local_variables_initializer().run()
# 使用start_queue_runners之后,才会开始填充队列
threads = tf.train.start_queue_runners(sess=sess)
i = 0
while True:
i += 1
# 获取图片数据并保存
image_data = sess.run(value)
with open('read/test_%d.jpg' % i, 'wb') as f:
f.write(image_data)
我们这里使用 filename_queue = tf.train.string_input_producer(filename, shuffle=False, num_epochs=5) 建立了一个会跑5个epoch的文件名队列。
并使用reader读取,reader每次读取一张图片并保存。
运行代码后,我们得到就可以看到read文件夹中的图片,正好是按顺序的5个epoch:

如果我们设置filename_queue = tf.train.string_input_producer(filename, shuffle=False, num_epochs=5)中的shuffle=True,那么在每个epoch内图像就会被打乱,如图所示:

我们这里只是用三张图片举例,实际应用中一个数据集肯定不止3张图片,不过涉及到的原理都是共通的。
四、总结
这篇文章主要用图解的方式详细介绍了tensorflow读取数据的机制,最后还给出了对应的实战代码,希望能够给大家学习tensorflow带来一些实质性的帮助。如果各位小伙伴还有什么疑问,欢迎评论或私信告诉我,谢谢~
------------------------------------------------------------------------------------------------------
【转载】 十图详解tensorflow数据读取机制(附代码)的更多相关文章
- 十图详解tensorflow数据读取机制(附代码)转知乎
十图详解tensorflow数据读取机制(附代码) - 何之源的文章 - 知乎 https://zhuanlan.zhihu.com/p/27238630
- tensorflow 1.0 学习:十图详解tensorflow数据读取机制
本文转自:https://zhuanlan.zhihu.com/p/27238630 在学习tensorflow的过程中,有很多小伙伴反映读取数据这一块很难理解.确实这一块官方的教程比较简略,网上也找 ...
- 十图详解tensorflow数据读取机制
在学习tensorflow的过程中,有很多小伙伴反映读取数据这一块很难理解.确实这一块官方的教程比较简略,网上也找不到什么合适的学习材料.今天这篇文章就以图片的形式,用最简单的语言,为大家详细解释一下 ...
- 十图详解TensorFlow数据读取机制(附代码)
在学习TensorFlow的过程中,有很多小伙伴反映读取数据这一块很难理解.确实这一块官方的教程比较简略,网上也找不到什么合适的学习材料.今天这篇文章就以图片的形式,用最简单的语言,为大家详细解释一下 ...
- 详解Tensorflow数据读取有三种方式(next_batch)
转自:https://blog.csdn.net/lujiandong1/article/details/53376802 Tensorflow数据读取有三种方式: Preloaded data: 预 ...
- Tensorflow数据读取机制
展示如何将数据输入到计算图中 Dataset可以看作是相同类型"元素"的有序列表,在实际使用时,单个元素可以是向量.字符串.图片甚至是tuple或dict. 数据集对象实例化: d ...
- [转载] 多图详解Spring框架的设计理念与设计模式
转载自http://developer.51cto.com/art/201006/205212_all.htm Spring作为现在最优秀的框架之一,已被广泛的使用,51CTO也曾经针对Spring框 ...
- 面渣逆袭:Spring三十五问,四万字+五十图详解
大家好,我是老三啊,面渣逆袭 继续,这节我们来搞定另一个面试必问知识点--Spring. 有人说,"Java程序员都是Spring程序员",老三不太赞成这个观点,但是这也可以看出S ...
- Transformer各层网络结构详解!面试必备!(附代码实现)
1. 什么是Transformer <Attention Is All You Need>是一篇Google提出的将Attention思想发挥到极致的论文.这篇论文中提出一个全新的模型,叫 ...
随机推荐
- Codes: MODERN ROBOTICS Ch.4_基于PoE的正运动学代码实现
%%1 基于PoE space form 的正运动学求解 % 输入M矩阵.螺旋轴列表Slist(column vector).关节角向量qlist(column vector),输出齐次变换矩阵T f ...
- 用chrome浏览器进行前端debug和停止debug
首先F12打开控制台: 选择"source","Ctrl+Shift+F"搜索需要debug的代码关键词(Ctrl+O根据文件名搜索): 打开需要debug的文 ...
- 1206 BBS注册
目录 昨日内容 BBS项目 1.项目开发流程 2.表设计 用户表 个人站点表 文章标签表 文章分类表 文章表 文章的点赞点踩表 文章的评论表 项目 昨日内容 昨日内容 基于django中间件实现功能的 ...
- 《The One!团队》第八次作业:ALPHA冲刺(二)
项目 内容 作业所属课程 所属课程 作业要求 作业要求 团队名称 < The One !> 作业学习目标 (1)掌握软件测试基础技术.(2)学习迭代式增量软件开发过程(Scrum) 第二天 ...
- 【Python学习】Python3 基础语法
==================================================================================================== ...
- Java - 框架之 MyBites
一. 开发步骤: 1. 创建 PO (model) 类,根据需求创建. 2. 创建全局配置文件 sqlMapConfig.xml. 3. 编写映射文件. 4. 加载映射文件, 在 SqlMapConf ...
- spark如何划分DAG视图
spark根据宽依赖进行DAG视图的划分. 1.窄依赖:每个父RDD的partition 最多被一个子RDD的 partition使用. 窄依赖分为两类:第一类是一对一的依赖关系,在Spark中用On ...
- kth-largest-element
Find the kth largest element in an unsorted array. Note that it is the kth largest element in the so ...
- Bootstrap是什么意思?
Bootstrap是一组用于网站和网络应用程序开发的开源前端(所谓“前端”,指的是展现给最终用户的界面.与之对应的“后端”是在服务器上面运行的代码)框架,包括HTML.CSS及JavaScript的框 ...
- POJ 2778 DNA Sequence (矩阵快速幂 + AC自动鸡)
题目:传送门 题意: 给你m个病毒串,只由(A.G.T.C) 组成, 问你生成一个长度为 n 的 只由 A.C.T.G 构成的,不包含病毒串的序列的方案数. 解: 对 m 个病毒串,建 AC 自动机, ...