原文地址:

https://zhuanlan.zhihu.com/p/27238630

深度学习(Deep Learning) 话题的优秀回答者
 
 
 

------------------------------------------------------------------------------------------------------

在学习tensorflow的过程中,有很多小伙伴反映读取数据这一块很难理解。确实这一块官方的教程比较简略,网上也找不到什么合适的学习材料。今天这篇文章就以图片的形式,用最简单的语言,为大家详细解释一下tensorflow的数据读取机制,文章的最后还会给出实战代码以供参考。

一、tensorflow读取机制图解

首先需要思考的一个问题是,什么是数据读取?以图像数据为例,读取数据的过程可以用下图来表示:

假设我们的硬盘中有一个图片数据集0001.jpg,0002.jpg,0003.jpg……我们只需要把它们读取到内存中,然后提供给GPU或是CPU进行计算就可以了。这听起来很容易,但事实远没有那么简单。事实上,我们必须要把数据先读入后才能进行计算,假设读入用时0.1s,计算用时0.9s,那么就意味着每过1s,GPU都会有0.1s无事可做,这就大大降低了运算的效率。

如何解决这个问题?方法就是将读入数据和计算分别放在两个线程中,将数据读入内存的一个队列,如下图所示:

读取线程源源不断地将文件系统中的图片读入到一个内存的队列中,而负责计算的是另一个线程,计算需要数据时,直接从内存队列中取就可以了。这样就可以解决GPU因为IO而空闲的问题!

而在tensorflow中,为了方便管理,在内存队列前又添加了一层所谓的“文件名队列”

为什么要添加这一层文件名队列?我们首先得了解机器学习中的一个概念:epoch。对于一个数据集来讲,运行一个epoch就是将这个数据集中的图片全部计算一遍。如一个数据集中有三张图片A.jpg、B.jpg、C.jpg,那么跑一个epoch就是指对A、B、C三张图片都计算了一遍。两个epoch就是指先对A、B、C各计算一遍,然后再全部计算一遍,也就是说每张图片都计算了两遍。

tensorflow使用文件名队列+内存队列  双队列的形式读入文件,可以很好地管理epoch。下面我们用图片的形式来说明这个机制的运行方式。如下图,还是以数据集A.jpg, B.jpg, C.jpg为例,假定我们要跑一个epoch,那么我们就在文件名队列中把A、B、C各放入一次,并在之后标注队列结束。

 程序运行后,内存队列首先读入A(此时A从文件名队列中出队):

再依次读入B和C: 

此时,如果再尝试读入,系统由于检测到了“结束”,就会自动抛出一个异常(OutOfRange)。外部捕捉到这个异常后就可以结束程序了。这就是tensorflow中读取数据的基本机制。    如果我们要跑2个epoch而不是1个epoch,那只要在文件名队列中将A、B、C依次放入两次再标记结束就可以了。

二、tensorflow读取数据机制的对应函数

如何在tensorflow中创建上述的两个队列呢?

对于文件名队列,我们使用  tf.train.string_input_producer  函数。这个函数需要传入一个文件名list,系统会自动将它转为一个文件名队列。

此外  tf.train.string_input_producer  还有两个重要的参数,一个是num_epochs,它就是我们上文中提到的epoch数。另外一个就是shuffle,shuffle是指在一个epoch内文件的顺序是否被打乱。若设置shuffle=False,如下图,每个epoch内,数据还是按照A、B、C的顺序进入文件名队列,这个顺序不会改变:

如果设置shuffle=True,那么在一个epoch内,数据的前后顺序就会被打乱,如下图所示:

在tensorflow中,内存队列不需要我们自己建立,我们只需要使用reader对象从文件名队列中读取数据就可以了,具体实现可以参考下面的实战代码。

除了tf.train.string_input_producer外,我们还要额外介绍一个函数:tf.train.start_queue_runners  。初学者会经常在代码中看到这个函数,但往往很难理解它的用处,在这里,有了上面的铺垫后,我们就可以解释这个函数的作用了。

在我们使用  tf.train.string_input_producer  创建文件名队列后,整个系统其实还是处于“停滞状态”的,也就是说,我们文件名并没有真正被加入到队列中(如下图所示)。此时如果我们开始计算,因为内存队列中什么也没有,计算单元就会一直等待,导致整个系统被阻塞。

而使用tf.train.start_queue_runners之后,才会启动填充队列的线程,这时系统就不再“停滞”。此后计算单元就可以拿到数据并进行计算,整个程序也就跑起来了,这就是函数tf.train.start_queue_runners的用处。

三、实战代码

对应的代码如下:

# 导入tensorflow
import tensorflow as tf # 新建一个Session
with tf.Session() as sess:
# 我们要读三幅图片A.jpg, B.jpg, C.jpg
filename = ['A.jpg', 'B.jpg', 'C.jpg']
# string_input_producer会产生一个文件名队列
filename_queue = tf.train.string_input_producer(filename, shuffle=False, num_epochs=5)
# reader从文件名队列中读数据。对应的方法是reader.read
reader = tf.WholeFileReader()
key, value = reader.read(filename_queue)
# tf.train.string_input_producer定义了一个epoch变量,要对它进行初始化
tf.local_variables_initializer().run()
# 使用start_queue_runners之后,才会开始填充队列
threads = tf.train.start_queue_runners(sess=sess)
i = 0
while True:
i += 1
# 获取图片数据并保存
image_data = sess.run(value)
with open('read/test_%d.jpg' % i, 'wb') as f:
f.write(image_data)

我们这里使用  filename_queue = tf.train.string_input_producer(filename, shuffle=False, num_epochs=5)  建立了一个会跑5个epoch的文件名队列。

并使用reader读取,reader每次读取一张图片并保存。

运行代码后,我们得到就可以看到read文件夹中的图片,正好是按顺序的5个epoch:

如果我们设置filename_queue = tf.train.string_input_producer(filename, shuffle=False, num_epochs=5)中的shuffle=True,那么在每个epoch内图像就会被打乱,如图所示:

我们这里只是用三张图片举例,实际应用中一个数据集肯定不止3张图片,不过涉及到的原理都是共通的。

四、总结

这篇文章主要用图解的方式详细介绍了tensorflow读取数据的机制,最后还给出了对应的实战代码,希望能够给大家学习tensorflow带来一些实质性的帮助。如果各位小伙伴还有什么疑问,欢迎评论或私信告诉我,谢谢~

------------------------------------------------------------------------------------------------------

【转载】 十图详解tensorflow数据读取机制(附代码)的更多相关文章

  1. 十图详解tensorflow数据读取机制(附代码)转知乎

    十图详解tensorflow数据读取机制(附代码) - 何之源的文章 - 知乎 https://zhuanlan.zhihu.com/p/27238630

  2. tensorflow 1.0 学习:十图详解tensorflow数据读取机制

    本文转自:https://zhuanlan.zhihu.com/p/27238630 在学习tensorflow的过程中,有很多小伙伴反映读取数据这一块很难理解.确实这一块官方的教程比较简略,网上也找 ...

  3. 十图详解tensorflow数据读取机制

    在学习tensorflow的过程中,有很多小伙伴反映读取数据这一块很难理解.确实这一块官方的教程比较简略,网上也找不到什么合适的学习材料.今天这篇文章就以图片的形式,用最简单的语言,为大家详细解释一下 ...

  4. 十图详解TensorFlow数据读取机制(附代码)

    在学习TensorFlow的过程中,有很多小伙伴反映读取数据这一块很难理解.确实这一块官方的教程比较简略,网上也找不到什么合适的学习材料.今天这篇文章就以图片的形式,用最简单的语言,为大家详细解释一下 ...

  5. 详解Tensorflow数据读取有三种方式(next_batch)

    转自:https://blog.csdn.net/lujiandong1/article/details/53376802 Tensorflow数据读取有三种方式: Preloaded data: 预 ...

  6. Tensorflow数据读取机制

    展示如何将数据输入到计算图中 Dataset可以看作是相同类型"元素"的有序列表,在实际使用时,单个元素可以是向量.字符串.图片甚至是tuple或dict. 数据集对象实例化: d ...

  7. [转载] 多图详解Spring框架的设计理念与设计模式

    转载自http://developer.51cto.com/art/201006/205212_all.htm Spring作为现在最优秀的框架之一,已被广泛的使用,51CTO也曾经针对Spring框 ...

  8. 面渣逆袭:Spring三十五问,四万字+五十图详解

    大家好,我是老三啊,面渣逆袭 继续,这节我们来搞定另一个面试必问知识点--Spring. 有人说,"Java程序员都是Spring程序员",老三不太赞成这个观点,但是这也可以看出S ...

  9. Transformer各层网络结构详解!面试必备!(附代码实现)

    1. 什么是Transformer <Attention Is All You Need>是一篇Google提出的将Attention思想发挥到极致的论文.这篇论文中提出一个全新的模型,叫 ...

随机推荐

  1. 基于Java+Selenium的WebUI自动化测试框架(十三)-----基础页面类BasePage(Excel)

    前面,我们讲了如何使用POI进行Excel的“按需读取”.根据前面我们写的BasePageX,我们可以很轻松的写出来基于这个“按需读取”的BasePage. package webui.xUtils; ...

  2. Codeforces H. Maximal GCD(贪心)

    题目描述: H. Maximal GCD time limit per test 1 second memory limit per test 256 megabytes input standard ...

  3. Kotlin对象表达式深入解析

    嵌套类与内部类巩固: 在上一次https://www.cnblogs.com/webor2006/p/11333101.html学到了Kotlin的嵌套类与内部类,回顾一下: 而对于嵌套类: 归根结底 ...

  4. linux文档与目录结构

    Linux文件系统结构 本文转自 https://www.cnblogs.com/pyyu/p/9213237.html Linux目录结构的组织形式和Windows有很大的不同.首先Linux没有“ ...

  5. C# 如何取消BackgroundWorker异步操作

    BackgroundWorker 在执行DoWork事件时该如何取消呢? 方法1 DoWork 执行一个(耗时)循环 方法2 DoWork执行一个(耗时)方法[注:方法没有循环] 见代码: 方法1中D ...

  6. 《少年先疯队》第九次团队作业:Beta冲刺与团队项目验收

    博文简要信息表: 项目 内容 软件工程 https://www.cnblogs.com/nwnu-daizh/ 本次实验链接地址 https://www.cnblogs.com/nwnu-daizh/ ...

  7. test20190725 夏令营测试11

    50+80+90=220.(每题满分90) 砍树 小A在一条水平的马路上种了n棵树,过了几年树都长得很高大了,每棵树都可以看作是一条长度为a[i]的竖线段.由于有的树过于高大,挡住了其他的树,使得另一 ...

  8. HTML5 WebSocket与C# 建立Socket连接

    一.WebSocket 概述 WebSocket 是 HTML5 开始提供的一种在单个 TCP 连接上进行全双工通讯的协议. WebSocket 使得客户端和服务器之间的数据交换变得更加简单,允许服务 ...

  9. 关于devexpress报表XtraReport,动态修改报表样式(.repx格式),动态添加数据并使用的理解

    一.基本概念: XtraReports 中的每个报表都由 XtraRepot 类的一个实例表示,或者由该类的子类来表示(这种情况更常见). 因此,每个报表都作为带区的容器使用,而每个带区中都包含报表控 ...

  10. Python文件的读写操作

    Python文件的使用 要点:Python能够以文本和二进制两种形式处理文件. 1.文件的打开模式,如表1:  注意:使用open()函数打开文件,文件使用结束后耀使用close()方法关闭,释放文件 ...