PAT 甲级 1146 Topological Order (25 分)(拓扑较简单,保存入度数和出度的节点即可)
This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topological order obtained from the given directed graph? Now you are supposed to write a program to test each of the options.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers N (≤ 1,000), the number of vertices in the graph, and M (≤10,000), the number of directed edges. Then M lines follow, each gives the start and the end vertices of an edge. The vertices are numbered from 1 to N. After the graph, there is another positive integer K (≤ 100). Then K lines of query follow, each gives a permutation of all the vertices. All the numbers in a line are separated by a space.
Output Specification:
Print in a line all the indices of queries which correspond to "NOT a topological order". The indices start from zero. All the numbers are separated by a space, and there must no extra space at the beginning or the end of the line. It is graranteed that there is at least one answer.
Sample Input:
6 8
1 2
1 3
5 2
5 4
2 3
2 6
3 4
6 4
5
1 5 2 3 6 4
5 1 2 6 3 4
5 1 2 3 6 4
5 2 1 6 3 4
1 2 3 4 5 6
Sample Output:
3 4
题意:
做这题之前首先要先去了解什么是拓扑排序,可以参考https://blog.csdn.net/qq_35644234/article/details/60578189
给出一个图,再给几组数据,让你判断这几组数据是否符合拓扑排序
题解:
保存入度数和出度的节点。用一个数组来统计每个点的入度,vector保存出度的节点,然后就可以开始判断。在判断的时候,将与这个点去掉,就是指这个点连接的所有点的入度都减了1。
AC代码:
#include<bits/stdc++.h>
using namespace std;
int n,m,u,v;
int in[],inx[];
vector<int>out[];
int main(){
cin>>n>>m;
memset(in,,sizeof(in));
for(int i=;i<=m;i++){
cin>>u>>v;
out[u].push_back(v);//保存出去的节点
in[v]++; //计算入度
}
int k;
cin>>k;
int a[];
int num=;
for(int i=;i<k;i++){
int f=;
memcpy(inx, in, sizeof(in));//将in拷贝给inx
for(int j=;j<=n;j++){
cin>>u;
if(inx[u]!=||f==){
f=;
continue;
}
for(int p=;p<out[u].size();p++){//对受影响的节点的入度--
inx[out[u].at(p)]--;
}
}
if(!f){
a[++num]=i;
}
}
for(int i=;i<=num;i++){
cout<<a[i];
if(i!=num) cout<<" ";
}
return ;
}
PAT 甲级 1146 Topological Order (25 分)(拓扑较简单,保存入度数和出度的节点即可)的更多相关文章
- PAT甲级——1146 Topological Order (25分)
This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topol ...
- PAT 甲级 1146 Topological Order
https://pintia.cn/problem-sets/994805342720868352/problems/994805343043829760 This is a problem give ...
- PAT 甲级 1048 Find Coins (25 分)(较简单,开个数组记录一下即可)
1048 Find Coins (25 分) Eva loves to collect coins from all over the universe, including some other ...
- PAT 甲级 1037 Magic Coupon (25 分) (较简单,贪心)
1037 Magic Coupon (25 分) The magic shop in Mars is offering some magic coupons. Each coupon has an ...
- PAT 甲级 1020 Tree Traversals (25分)(后序中序链表建树,求层序)***重点复习
1020 Tree Traversals (25分) Suppose that all the keys in a binary tree are distinct positive intege ...
- PAT 甲级 1059 Prime Factors (25 分) ((新学)快速质因数分解,注意1=1)
1059 Prime Factors (25 分) Given any positive integer N, you are supposed to find all of its prime ...
- PAT 甲级 1051 Pop Sequence (25 分)(模拟栈,较简单)
1051 Pop Sequence (25 分) Given a stack which can keep M numbers at most. Push N numbers in the ord ...
- PAT 甲级 1028 List Sorting (25 分)(排序,简单题)
1028 List Sorting (25 分) Excel can sort records according to any column. Now you are supposed to i ...
- PAT 甲级 1021 Deepest Root (25 分)(bfs求树高,又可能存在part数part>2的情况)
1021 Deepest Root (25 分) A graph which is connected and acyclic can be considered a tree. The heig ...
随机推荐
- Eclipse中修改了项目,导入Tomcat中时,括号显示原来项目的名字
Eclipse中Tomcat导入项目并且修改了项目名字,把项目添加到Tomcat上,发现在项目后面带了个括号里面显示原来项目的名字,并且在访问的时候也只能用原来的项目名访问,怎么办呢? 1.打开你的项 ...
- Linux - 运行 django 时 :django.db.utils.Notsupportederror: urls not supported
运行 django 是异常:django.db.utils.Notsupportederror: urls not supported 原因:sqlite3版本3.7的问题 解决:直接改源码 1. p ...
- C++编程习惯
1.初始化列表,尽量使用. 2.函数是否加const,只用而不改变就推荐加上const.如自定义的get某个属性的函数. 3.函数参数尽量用引用传递,返回值也优先考虑引用类型(引用必须保证在使用前,本 ...
- sublime test 3 配置安装fortran开发环境
1.ST3下安装包管理工具Package Control https://jingyan.baidu.com/article/3c343ff7dca2b10d3779633b.html ST主界面下c ...
- 04_(终结版)通过App实现对数据库的增删改
设计思路:用户注册登录:用户注册或登录(login数据表),成功后进入增删改查(words数据表)注意:只有登录验证成功后才可以增删改查,否则提示未登录! 增:用户在App上add(单词.词义.音标) ...
- 如何选择梯度下降法中的学习速率α(Gradient Descent Learning Rate Alpha)
梯度下降算法的任务是寻找参数θ,使之能够最小化损失函数. 那么梯度下降法中的学习速率α应该如何选择呢?通常我们画出损失函数随迭代次数增加而变化的曲线. 可能会得到如下的一条曲线,x轴表示迭代次数,y轴 ...
- GoCN每日新闻(2019-09-28)
GoCN每日新闻(2019-09-28) 1. 可视化Go程序的调用图 https://truefurby.github.io/go-callvis/2. Go modules编写和发布官方教程 h ...
- Pytest权威教程21-API参考-01-函数(Functions)
目录 函数(Functions) pytest.approx pytest.fail pytest.skip pytest.importorskip pytest.xfail pytest.exit ...
- SpringCloud:入门介绍
1.微服务简介 业界大牛马丁.福勒(Martin Fowler) 这样描述微服务: 论文网址: https://martinfowler.com/articles/microse ...
- kubernetes 1.14安装部署EFK日志收集系统
简单介绍: EFK 组合插件是k8s项目的一个日志解决方案,它包括三个组件:Elasticsearch, Fluentd, Kibana.相对于ELK这样的架构,k8s官方推行了EFK,可能Fluen ...