https://blog.csdn.net/weixin_34260991/article/details/87106463

这里使用比较简单的定义方式,只是在原有的激活函数调用中加入。

准备工作
下载MXNet源代码,确认可以顺利编译通过。推荐在Linux下进行此操作:

https://mxnet.incubator.apache.org/get_started/install.html

编写激活函数先前和先后传递
在src/operator/mshadow_op.h里面,加入新的激活函数向前传递和向后的函数:

/*!
* \brief RBF Unit
* \author Yuzhong Liu
*/
struct rbf {
template<typename DType>
MSHADOW_XINLINE static DType Map(DType x) {
return DType(expf(-x*x));
}
};

struct rbf_grad {
template<typename DType>
MSHADOW_XINLINE static DType Map(DType x, DType a) {
return DType(-2 * x * a);
}
};
添加调用方法
在src/operator/leaky_relu-inl.h里面,激活函数的调用方式:

namespace leakyrelu {
enum LeakyReLUOpInputs {kData, kGamma};
enum LeakyReLUOpOutputs {kOut, kMask};
# 定义新的激活函数名称
enum LeakyReLUOpType {kLeakyReLU, kPReLU, kRReLU, kELU, kRBF};
enum LeakyReLUOpResource {kRandom};
} // namespace leakyrelu

struct LeakyReLUParam : public dmlc::Parameter<LeakyReLUParam> {
// use int for enumeration
int act_type;
float slope;
float lower_bound;
float upper_bound;
DMLC_DECLARE_PARAMETER(LeakyReLUParam) {
DMLC_DECLARE_FIELD(act_type).set_default(leakyrelu::kLeakyReLU)
.add_enum("rrelu", leakyrelu::kRReLU)
.add_enum("leaky", leakyrelu::kLeakyReLU)
.add_enum("prelu", leakyrelu::kPReLU)
.add_enum("elu", leakyrelu::kELU)
# 添加激活函数枚举
.add_enum("rbf", leakyrelu::kRBF)
.describe("Activation function to be applied.");
DMLC_DECLARE_FIELD(slope).set_default(0.25f)
.describe("Init slope for the activation. (For leaky and elu only)");
DMLC_DECLARE_FIELD(lower_bound).set_default(0.125f)
.describe("Lower bound of random slope. (For rrelu only)");
DMLC_DECLARE_FIELD(upper_bound).set_default(0.334f)
.describe("Upper bound of random slope. (For rrelu only)");
}
};

template<typename xpu>
class LeakyReLUOp : public Operator {
public:
explicit LeakyReLUOp(LeakyReLUParam param) {
param_ = param;
}

virtual void Forward(const OpContext &ctx,
const std::vector<TBlob> &in_data,
const std::vector<OpReqType> &req,
const std::vector<TBlob> &out_data,
const std::vector<TBlob> &aux_args) {
using namespace mshadow;
using namespace mshadow::expr;
size_t expected = param_.act_type == leakyrelu::kPReLU ? 2 : 1;
CHECK_EQ(in_data.size(), expected);
Stream<xpu> *s = ctx.get_stream<xpu>();
Tensor<xpu, 3> data;
Tensor<xpu, 3> out;
Tensor<xpu, 3> mask;
Tensor<xpu, 1> weight;
int n = in_data[leakyrelu::kData].shape_[0];
int k = in_data[leakyrelu::kData].shape_[1];
Shape<3> dshape = Shape3(n, k, in_data[leakyrelu::kData].Size()/n/k);
data = in_data[leakyrelu::kData].get_with_shape<xpu, 3, real_t>(dshape, s);
out = out_data[leakyrelu::kOut].get_with_shape<xpu, 3, real_t>(dshape, s);
if (param_.act_type == leakyrelu::kRReLU) {
mask = out_data[leakyrelu::kMask].get_with_shape<xpu, 3, real_t>(dshape, s);
}
switch (param_.act_type) {
case leakyrelu::kLeakyReLU: {
Assign(out, req[leakyrelu::kOut], F<mshadow_op::xelu>(data, param_.slope));
break;
}
case leakyrelu::kPReLU: {
weight = in_data[leakyrelu::kGamma].get<xpu, 1, real_t>(s);
Assign(out, req[leakyrelu::kOut],
F<mshadow_op::xelu>(data, broadcast<1>(weight, out.shape_)));
break;
}
case leakyrelu::kRReLU: {
if (ctx.is_train) {
Random<xpu>* prnd = ctx.requested[leakyrelu::kRandom].get_random<xpu, real_t>(s);
mask = prnd->uniform(mask.shape_);
mask = mask * (param_.upper_bound - param_.lower_bound) + param_.lower_bound;
Assign(out, req[leakyrelu::kOut], F<mshadow_op::xelu>(data, mask));
} else {
const float slope = (param_.lower_bound + param_.upper_bound) / 2.0f;
Assign(out, req[leakyrelu::kOut], F<mshadow_op::xelu>(data, slope));
}
break;
}
case leakyrelu::kELU: {
Assign(out, req[leakyrelu::kOut], F<mshadow_op::elu>(data, param_.slope));
break;
}
# RBF向前
case leakyrelu::kRBF: {
Assign(out, req[leakyrelu::kOut], F<mshadow_op::rbf>(data));
break;
}
default:
LOG(FATAL) << "Not implmented";
}
}

virtual void Backward(const OpContext & ctx,
const std::vector<TBlob> &out_grad,
const std::vector<TBlob> &in_data,
const std::vector<TBlob> &out_data,
const std::vector<OpReqType> &req,
const std::vector<TBlob> &in_grad,
const std::vector<TBlob> &aux_args) {
using namespace mshadow;
using namespace mshadow::expr;
size_t expected = param_.act_type == leakyrelu::kPReLU ? 2 : 1;
CHECK_EQ(out_grad.size(), 1U);
CHECK_EQ(req.size(), expected);
CHECK_EQ(in_data.size(), expected);
Stream<xpu> *s = ctx.get_stream<xpu>();
Tensor<xpu, 3> output;
Tensor<xpu, 3> data;
Tensor<xpu, 3> gdata;
Tensor<xpu, 3> grad;
Tensor<xpu, 3> mask;
Tensor<xpu, 1> weight;
Tensor<xpu, 1> grad_weight;
int n = out_grad[leakyrelu::kOut].shape_[0];
int k = out_grad[leakyrelu::kOut].shape_[1];
Shape<3> dshape = Shape3(n, k, out_grad[leakyrelu::kOut].Size()/n/k);
grad = out_grad[leakyrelu::kOut].get_with_shape<xpu, 3, real_t>(dshape, s);
gdata = in_grad[leakyrelu::kData].get_with_shape<xpu, 3, real_t>(dshape, s);
output = out_data[leakyrelu::kOut].get_with_shape<xpu, 3, real_t>(dshape, s);
if (param_.act_type == leakyrelu::kRReLU) {
mask = out_data[leakyrelu::kMask].get_with_shape<xpu, 3, real_t>(dshape, s);
}
if (param_.act_type == leakyrelu::kPReLU) {
data = in_data[leakyrelu::kData].get_with_shape<xpu, 3, real_t>(dshape, s);
}
switch (param_.act_type) {
case leakyrelu::kLeakyReLU: {
Assign(gdata, req[leakyrelu::kData], F<mshadow_op::xelu_grad>(output, param_.slope) * grad);
break;
}
case leakyrelu::kPReLU: {
weight = in_data[leakyrelu::kGamma].get<xpu, 1, real_t>(s);
grad_weight = in_grad[leakyrelu::kGamma].get<xpu, 1, real_t>(s);
grad_weight = sumall_except_dim<1>(F<prelu_grad>(data) * grad);
gdata = F<mshadow_op::xelu_grad>(data, broadcast<1>(weight, data.shape_)) * grad;
break;
}
case leakyrelu::kRReLU: {
Assign(gdata, req[leakyrelu::kData], F<mshadow_op::xelu_grad>(output, mask) * grad);
break;
}
case leakyrelu::kELU: {
Assign(gdata, req[leakyrelu::kData], F<mshadow_op::elu_grad>(output, param_.slope) * grad);
break;
}
# RBF向前
case leakyrelu::kRBF: {
data = in_data[leakyrelu::kData].get_with_shape<xpu, 3, real_t>(dshape, s);
Assign(gdata, req[leakyrelu::kData], F<mshadow_op::rbf_grad>(data, output) * grad);
break;
}
default:
LOG(FATAL) << "Not implmented";
}
}

private:
LeakyReLUParam param_;
}; // class LeakyReLUOp
从重新编译,并测试
import mxnet as mx
from mxnet import autograd
a = mx.nd.random_uniform(-1, 1, shape=[3, 3]) +0.5
a.attach_grad()

with autograd.record():
b = mx.nd.LeakyReLU(data=a, act_type='rbf')

print a, b
参考资料
https://mxnet.incubator.apache.org/how_to/new_op.html
http://blog.csdn.net/qq_20965753/article/details/66975622?utm_source=debugrun&utm_medium=referral
---------------------
作者:weixin_34260991
来源:CSDN
原文:https://blog.csdn.net/weixin_34260991/article/details/87106463
版权声明:本文为博主原创文章,转载请附上博文链接!

MXNet 定义新激活函数(Custom new activation function)的更多相关文章

  1. 浅谈深度学习中的激活函数 - The Activation Function in Deep Learning

    原文地址:http://www.cnblogs.com/rgvb178/p/6055213.html版权声明:本文为博主原创文章,未经博主允许不得转载. 激活函数的作用 首先,激活函数不是真的要去激活 ...

  2. The Activation Function in Deep Learning 浅谈深度学习中的激活函数

    原文地址:http://www.cnblogs.com/rgvb178/p/6055213.html 版权声明:本文为博主原创文章,未经博主允许不得转载. 激活函数的作用 首先,激活函数不是真的要去激 ...

  3. 《Noisy Activation Function》噪声激活函数(一)

    本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/51736830 Noisy Activa ...

  4. 激活函数:Swish: a Self-Gated Activation Function

    今天看到google brain 关于激活函数在2017年提出了一个新的Swish 激活函数. 叫swish,地址:https://arxiv.org/abs/1710.05941v1 pytorch ...

  5. caffe中的sgd,与激活函数(activation function)

    caffe中activation function的形式,直接决定了其训练速度以及SGD的求解. 在caffe中,不同的activation function对应的sgd的方式是不同的,因此,在配置文 ...

  6. TensorFlow Activation Function 1

    部分转自:https://blog.csdn.net/caicaiatnbu/article/details/72745156 激活函数(Activation Function)运行时激活神经网络中某 ...

  7. ML 激励函数 Activation Function (整理)

    本文为内容整理,原文请看url链接,感谢几位博主知识来源 一.什么是激励函数 激励函数一般用于神经网络的层与层之间,上一层的输出通过激励函数的转换之后输入到下一层中.神经网络模型是非线性的,如果没有使 ...

  8. 转载-聊一聊深度学习的activation function

    目录 1. 背景 2. 深度学习中常见的激活函数 2.1 Sigmoid函数 2.2 tanh函数 2.3 ReLU函数 2.4 Leaky ReLu函数 2.5 ELU(Exponential Li ...

  9. TensorFlow实战第一课(session、Variable、Placeholder、Activation Function)

    莫烦tensorflow教学 1.session会话控制 Tensorflow 中的Session, Session是 Tensorflow 为了控制,和输出文件的执行的语句. 运行session.r ...

随机推荐

  1. [LeetCode] 543. 二叉树的直径 ☆(递归、数最大深度)

    描述 给定一棵二叉树,你需要计算它的直径长度.一棵二叉树的直径长度是任意两个结点路径长度中的最大值.这条路径可能穿过根结点. 示例 :给定二叉树 1 / \ 2 3 / \ 4 5 返回 3, 它的长 ...

  2. 关于小程序授权地理位置(wx.getLocation + 用户体验)

    wx.getLocation 如果用户曾点击过一次 “确认授权” , 那么再次调用该接口时将不会出现弹出框(可以直接拿到经纬度) 关于用户体验: 在 onLoad 中判断: 如果用户之前“没有触发过“ ...

  3. Linux 运维入门到跑路书单推荐

    一.基础入门 <鸟哥的Linux私房菜基础学习篇>:最具知名度的Linux入门书<鸟哥的Linux私房菜基础学习篇>,全面而详细地介绍了Linux操作系统. https://b ...

  4. CentOS7.5环境下搭建禅道

    在安装配置禅道之前,可以百度了解一下两款项目管理工具禅道与JIRA的区别. 一.安装 进入禅道官网https://www.zentao.net,选择适用的版本进行安装,我这里下载的是“开源版11.6” ...

  5. python开发笔记-类

    类的基本概念: 问题空间:问题空间是问题解决者对一个问题所达到的全部认识状态,它是由问题解决者利用问题所包含的信息和已贮存的信息主动的地构成的. 初始状态:一开始时的不完全的信息或令人不满意的状况: ...

  6. c#2.0锐利体验《泛型编程》读书笔记

    1.c#泛型及机制 Class Stack<T> { } T 其实为type的缩小,不过也可为其他字符代替T ,被称为“泛型类型”  T为晚绑定的,在编译的时候还不能确定T的确切类型. 2 ...

  7. 与你一起学习MS Project——高级篇:Project高级应用

    我们再来看Project的一些高级应用. 一.设置任务依赖性的几种方法 首先是设置任务依赖性的几种方法,这里介绍三种方法. 方法一:选中两个需要建立依赖型的任务.选中用 ctrl 鼠标左键 的方式即可 ...

  8. spark的scala:wordCount解析

  9. python变量选中后高亮显示

    file>settings>editor>color scheme>general>code>identifier under caret>backgroun ...

  10. hdu6172&&hdu6185&&P5487——BM算法

    hdu6172 模板的简单应用 先根据题中的表达式求出前几项,再上BM,注意一下n的大小关系. #include <bits/stdc++.h> using namespace std; ...