66、Spark Streaming:数据处理原理剖析与源码分析(block与batch关系透彻解析)
一、数据处理原理剖析
每隔我们设置的batch interval 的time,就去找ReceiverTracker,将其中的,从上次划分batch的时间,到目前为止的这个batch interval time间隔内的block封装为一个batch; 其次,会将这个batch中的数据,去创建为一个初始的RDD,一个batch内,在这段时间封装了几个block,就代表这个batch对应的RDD内会有几个partition; 这个batch对应的RDD的partition决定了数据处理阶段的并行度,这个跟调优关系很大,如果想增加数据处理阶段的性能,就考虑增加并行度,那么就考虑缩短block interval; 只有output操作中,使用了ForEachStream,其中定义了generatorJob()方法,在数据处理阶段,才触发针对接收到的一个一个batch的数据,触发小的job,去处理该batch的数据; 最后一步,去找JobScheduler去调度job,job的输入RDD,就是batch对应的RDD;
二、源码分析
入口,JobGenerator的generateJobs()方法
###org.apache.spark.streaming.scheduler/JobGenerator.scala /**
* 定时,调度generateJobs()方法,传入一个time,其实就是一个batch interval内的时间段
*/
private def generateJobs(time: Time) {
// Set the SparkEnv in this thread, so that job generation code can access the environment
// Example: BlockRDDs are created in this thread, and it needs to access BlockManager
// Update: This is probably redundant after threadlocal stuff in SparkEnv has been removed.
SparkEnv.set(ssc.env)
Try {
// 找到ReceiverTracker,调用其allocateBlocksToBatch方法,将当前时间段内的block分配给一个batch,并为其
// 创建一个RDD
jobScheduler.receiverTracker.allocateBlocksToBatch(time) // allocate received blocks to batch
// 调用DSteamGraph的generateJobs()来根据程序定义的DSteam之间的依赖关系和算子,生成job
graph.generateJobs(time) // generate jobs using allocated block
} match {
// 如果成功创建了job
case Success(jobs) =>
// 从ReceiverTracker中,获取当前batch interval对应的block数据
val receivedBlockInfos =
jobScheduler.receiverTracker.getBlocksOfBatch(time).mapValues { _.toArray }
// 用jobScheduler提交job,其对应的原始数据,是那批block
jobScheduler.submitJobSet(JobSet(time, jobs, receivedBlockInfos))
case Failure(e) =>
jobScheduler.reportError("Error generating jobs for time " + time, e)
}
eventActor ! DoCheckpoint(time)
}
66、Spark Streaming:数据处理原理剖析与源码分析(block与batch关系透彻解析)的更多相关文章
- 65、Spark Streaming:数据接收原理剖析与源码分析
一.数据接收原理 二.源码分析 入口包org.apache.spark.streaming.receiver下ReceiverSupervisorImpl类的onStart()方法 ### overr ...
- 64、Spark Streaming:StreamingContext初始化与Receiver启动原理剖析与源码分析
一.StreamingContext源码分析 ###入口 org.apache.spark.streaming/StreamingContext.scala /** * 在创建和完成StreamCon ...
- 18、TaskScheduler原理剖析与源码分析
一.源码分析 ###入口 ###org.apache.spark.scheduler/DAGScheduler.scala // 最后,针对stage的task,创建TaskSet对象,调用taskS ...
- 22、BlockManager原理剖析与源码分析
一.原理 1.图解 Driver上,有BlockManagerMaster,它的功能,就是负责对各个节点上的BlockManager内部管理的数据的元数据进行维护, 比如Block的增删改等操作,都会 ...
- 21、Shuffle原理剖析与源码分析
一.普通shuffle原理 1.图解 假设有一个节点上面运行了4个 ShuffleMapTask,然后这个节点上只有2个 cpu core.假如有另外一台节点,上面也运行了4个ResultTask,现 ...
- 20、Task原理剖析与源码分析
一.Task原理 1.图解 二.源码分析 1. ###org.apache.spark.executor/Executor.scala /** * 从TaskRunner开始,来看Task的运行的工作 ...
- 19、Executor原理剖析与源码分析
一.原理图解 二.源码分析 1.Executor注册机制 worker中为Application启动的executor,实际上是启动了这个CoarseGrainedExecutorBackend进程: ...
- 23、CacheManager原理剖析与源码分析
一.图解 二.源码分析 ###org.apache.spark.rdd/RDD.scalal ###入口 final def iterator(split: Partition, context: T ...
- 16、job触发流程原理剖析与源码分析
一.以Wordcount为例来分析 1.Wordcount val lines = sc.textFile() val words = lines.flatMap(line => line.sp ...
随机推荐
- 切换GCC编译器版本
当前版本信息 root@ubuntu:runninglinuxkernel_4.0# aarch64-linux-gnu-gcc -v Using built-in specs. COLLECT_GC ...
- C# vb .net实现翻转特效滤镜
在.net中,如何简单快捷地实现Photoshop滤镜组中的翻转特效效果呢?答案是调用SharpImage!专业图像特效滤镜和合成类库.下面开始演示关键代码,您也可以在文末下载全部源码: 设置授权 第 ...
- 静态工具类注入service的方法
http://blog.sina.com.cn/s/blog_6e2d53050102wl3x.html
- Java自学-控制流程 for
Java的for循环 for循环,和while一样,只是表达方式不一样 示例 1 : for 比较for和while public class HelloWorld { public static v ...
- 记录一次git回滚代码
老大临时让更新一版代码到本地,熟练的git fetch/git merge 之后,出来了一批改动的文件,但是并不是我改动的. 我以为是版本迭代出来的其他同事改的,我就直接给add commit到我的版 ...
- nginx-1.12.0安装
1.配置相关环境: yum install -y gcc glibc gcc-c++ zlib pcre-devel openssl-devel rewrite模块需要pcre库 ssl功能需要ope ...
- java中的参数传递
Java中只有传值调用(值传递),没有传址调用(址传递或者引用传递).所以在java方法中改变参数的值是不会改变原变量的值的,但为什么改变引用变量的属性值却可以呢?请看下面的解答. java中的数据类 ...
- Docke 镜像加速
一.国内获取Docker镜像时,访问 https://hub.docker.com/速度缓慢,只有几十K左右,这种情况可以使用国内的一些docker镜像,国内有些企业做了镜像拷贝工作,这样,我们就可以 ...
- SHELL脚本编程-字符串处理
SHELL脚本编程-字符串处理 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.字符串切片 [root@node101.yinzhengjie.org.cn ~]# echo { ...
- Python入门篇-类型注解
Python入门篇-类型注解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.函数定义的弊端 1>.动态语言很灵活,但是这种特性也是弊端 Python是动态语言,变量随时可 ...