传送门

Description

求给\(n*m\)的矩阵填数的方案数

满足:

\[1\leq x_{i,j}\leq m
\]

\[x_{i,j}<x_{i,j+1}
\]

\[x_{i,j}<x_{i-1,j+1}
\]

Solution 

\(f[i][j]\)表示当前第\(i\)行少的数字是\(j\)的方案数

\[f[i][j]=\sum_{k=1}^{j+1}f[i-1][k]=f[i][j-1]+f[i-1][j+1]
\]

观察dp的转移方程

发现它和路径计数的过程很类似

通过等价变化,答案即为:

从\((0,0)\)到\((n+m+1,n)\)且不经过直线,\(A:y=x+1\),\(B:y=x-(m+2)\)的方案数

走的方式为只能沿坐标轴的正方向

假如说如果没有限制条件,从\((0,0)\) 到\((x,y)\) 的方案数是\(\binom{x+y}{x}\)

接下来,我们考虑如何进行容斥:

考虑一种关于自身长度奇偶性的容斥

简化一下不合法的经过的路线,有两种情况:\(ABABAB...\)和\(BABABA...\)

这里,如若连着触碰一个条线,我们把它当作是一次

设终点为\((x,y)\),它关于\(A\)的对称点是\((x_1,y_1)\)

那么从\((0,0)\)到\((x_1,y_1)\)的路径可以对应一条必然经过了一次\(A\)线的路径,所以它的结尾肯定是\(AB\)或\(A\)

将其减去

设\((x_1,y_1)\)关于\(B\)的对称点是\((x2_y2)\)

那么从\((0,0)\)到\((x2,y2)\)的路径可以对应一条必然经过了一次\(BA\)的路径,所以它的结尾肯定是\(BA\)或\(BAB\)

将其加回

......

如此往复,直到不存在所要求的路径的后缀

可以发现,这样一来,恰好所有以\(A\)开头的都被计算了奇数次,也就是被减了一次

以\(B\)开头的不合法路径相似计算即可

Code 

//f[i][j]表示当前第i行少的数字是j的方案数
//f[i][j]=\sum_{k=1}^{j+1}f[i-1][k]=f[i][j-1]+f[i-1][j+1]
//把改问题转换为路径问题,用组合数加容斥来做
#include<bits/stdc++.h>
#define reg register
#define ll long long
#define db double
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*f;
}
const int MN=1e6+5,P=1e9+7;
int n,m,M;
int fac[MN<<2],inv[MN<<2];
int Mul(int x,int y){return (1ll*x*y)%P;}
int Add(int x,int y){y=((y%P)+P)%P;return (x+y)%P;}
int X,Y,_,ans;
int C(int x=M,int y=Y)
{
if(x<0||y<0||y>x)return 0;
return Mul(Mul(fac[x],inv[y]),inv[x-y]);
}
void _1(){X=Y-1;Y=_+1;_=X;}
void _2(){X=Y+(m+2);Y=_-(m+2);_=X;}
int main()
{
n=read();m=read();M=2*n+m+1;
_=X=n+m+1;Y=n;
fac[0]=fac[1]=inv[0]=inv[1]=1;
register int i,tmp;
for(i=2;i<=M;++i) fac[i]=Mul(fac[i-1],i);
for(i=2;i<=M;++i) inv[i]=Mul(inv[P%i],(P-P/i));
for(i=2;i<=M;++i) inv[i]=Mul(inv[i-1],inv[i]);
ans=C();
for(i=1;;++i)
{
if(i&1) _1();else _2();if(X<0||Y<0) break;
ans=Add(ans,(-1)*(i&1?1:-1)*C());
}
_=X=n+m+1;Y=n;
for(i=1;;++i)
{
if(i&1) _2();else _1();if(X<0||Y<0) break;
ans=Add(ans,(-1)*(i&1?1:-1)*C());
}
return 0*printf("%d\n",ans);
}

Blog来自PaperCloud,未经允许,请勿转载,TKS!

[JLOI 2015]骗我呢的更多相关文章

  1. BZOJ 4005 [JLOI 2015] 骗我呢

    首先,我们可以得到:每一行的数都是互不相同的,所以每一行都会有且仅有一个在 $[0, m]$ 的数没有出现. 我们可以考虑设 $Dp[i][j]$ 为处理完倒数 $i$ 行,倒数第 $i$ 行缺的数字 ...

  2. [JLOI2015]骗我呢

    [JLOI2015]骗我呢 Tags:题解 作业部落 评论地址 TAG:数学,DP 题意 骗你呢 求满足以下条件的\(n*m\)的矩阵的个数对\(10^9+7\)取模 对于矩阵中的第\(i\)行第\( ...

  3. 【BZOJ4005】[JLOI2015] 骗我呢(容斥,组合计数)

    [BZOJ4005][JLOI2015] 骗我呢(容斥,组合计数) 题面 BZOJ 洛谷 题解 lalaxu #include<iostream> using namespace std; ...

  4. 「JLOI2015」骗我呢 解题报告?

    「JLOI2015」骗我呢 这什么神仙题 \[\color{purple}{Link}\] 可以学到的东西 对越过直线的东西翻折进行容斥 之类的..吧? Code: #include <cstd ...

  5. 【BZOJ4005】[JLOI2015]骗我呢

    题意: Alice和Bob在经过了数学的洗礼之后,不再喜欢玩对抗游戏了,他们喜欢玩合作游戏.现在他们有一个n×m的网格,Alice和Bob要在一定规则下往网 格里填数字,Alice和Bob都是聪明绝顶 ...

  6. BZOJ 4004 [JLOI 2015] 装备购买 解题报告

    哎这个题 WA 了无数遍...果然人太弱... 首先我们把这些装备按照花费从小到大排序,然后依次考虑是否能买这个装备. 至于这样为什么是对的,好像有一个叫拟阵的东西可以证明,然而我不会.TATQAQ ...

  7. bzoj4005[JLOI2015]骗我呢

    http://www.lydsy.com/JudgeOnline/problem.php?id=4005 神题~远距离orz 膜拜PoPoQQQ大神 #include<cstdio> #i ...

  8. [JLOI 2015]装备购买

    Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示  (1 <= i <= n; 1 < ...

  9. [JLOI 2015]城池攻占

    Description 小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑士攻占 n 个城池. 这 n 个城池用 1 到 n 的整数表示.除 1 号城池外,城池 i 会受到另一座城池 fi 的管辖, ...

随机推荐

  1. 必须掌握的Linux用户组

    在 Linux 系统中用户组起着重要作用.用户组提供了一种简单方法供一组用户互相共享文件.用户组也允许系统管理员更加有效地管理用户权限,因为管理员可以将权限分配给用户组而不是逐一分配给单个用户. 尽管 ...

  2. 如何使用Git 优雅的版本回退呢?

    在版本迭代开发过程中,相信很多人都会有过错误提交的时候(至少良许有过几次这样的体验).这种情况下,菜鸟程序员可能就会虎驱一震,紧张得不知所措.而资深程序员就会微微一笑,摸一摸锃亮的脑门,然后默默的进行 ...

  3. 设计模式-依赖倒置-Dependency Inversion Principle

    依赖倒置原则: 一般来说我们认为作为底层基础框架的逻辑是不应该依赖于上层逻辑的, 所以我们设计软件时也经常是: 需求 - 上层逻辑(直接实现需求) - 发现需要固化的逻辑 - 开发底层模块 - 然后上 ...

  4. win10设置锁屏密码

    1.点击右下角窗口键 2.选择点击设置 3.点击账户 4.点击登录选项 5.点击密码,添加密码 6.设置密码 7.使用快捷键“窗口键+l”锁屏,就会提示你输入密码

  5. 创建图 figure & figcaption

    如报纸.杂志.报告等其他媒介上看到过图.通常,图是由页面上的文本引述出. 在HTML5出现之前,没有专门实现这个目的的元素,因此一些开发人员想出了他们自己的解决办法(通常会使用不那么理想的.没有语义的 ...

  6. bootstrap fileinput实现限制图片上传数量及如何控制分批多次上传

    废话没有,直奔主题 问题点: fileinput提供了一个maxFileCount用于限制图片上传的数量,设置maxFileCount为1时,一次性选择超过一张会有如下提示: 当选择一张,不点上传,再 ...

  7. Android EventBus使用大全

    添加依赖 implementation 'org.greenrobot:eventbus:3.1.1' public class HuaDongActivity extends Activity { ...

  8. MapReduce1.x与MapReduce2.x差异

    一.MapReduce1.x简介 1.图解 2.JobTracker 主节点,单点,负责调度所有的作用和监控整个集群的资源负载. 3.TaskTracker 从节点,自身节点资源管理和JobTrack ...

  9. vue echarts中绑定的click函数无法引用vue实例data里面的数据

    在使用echarts的时候,需要在触发click事件之后去修改实例data里面的数据,可是发现用this引用后总是出现undefined, 解决办法: myChart.on('click', (par ...

  10. PHP 接口输出 图片

    html: <img src="{eq name='v.miniqrcode' value=""}{:url('makeMiniQrcode_do')}?id={$ ...