[HNOI2012]集合选数(构造,状态压缩,DP)
神仙题。
莫名其妙的就试一试把所有数放进一个类似矩阵的东西里面。
首先把 \(1\) 放到左上角,然后在每个数的右边放它的 \(3\) 倍(大于 \(n\) 就不用放了),下面放它的 \(2\) 倍(大于 \(n\) 就不用放了)。
注意这样子有些数会不在里面。那么从小到大,每次选最小的且没有出现过的数作为一个新的“矩阵”的左上角。容易发现这些“矩阵”互不干扰,对每个矩阵分别求方案数,乘起来就好了。
对于一个矩阵,发现就是对于一个数,如果它选了,那么它右边和下面的都不能选。
问题就变成选一些数,互不相邻的方案数。
由于这个矩阵不会太大(长和宽都是 \(\log\) 级别的),所以直接状压。
时间复杂度,大力分析一波(我的分析特别松,首先假设所有矩阵都是满的,也就是右下角不会空出一块,然后状压时也不考虑能不能删掉无用状态),会得到一个极其松的上界 \(3\times 10^7\)。状压 DP 时剪掉无用状态,就能跑得飞快了。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
const int maxn=100010,mod=1000000001;
#define MP make_pair
#define PB push_back
#define lson o<<1,l,mid
#define rson o<<1|1,mid+1,r
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline ll read(){
char ch=getchar();ll x=0,f=0;
while(ch<'0' || ch>'9') f|=ch=='-',ch=getchar();
while(ch>='0' && ch<='9') x=x*10+ch-'0',ch=getchar();
return f?-x:x;
}
int n,ans=1,len[18],f[18][2048],ok[2048],ol;
bool vis[maxn];
bool check(int x){
FOR(i,0,11) if((x>>i)&(x>>(i+1))&1) return false;
return true;
}
int solve(int x){
int y=x,w,s=0;
FOR(i,1,n){
if(y>n) break;
int z=y;
FOR(j,1,n){
if(z>n) break;
len[i]=j;
vis[z]=true;
z*=3;
}
w=i;
y*=2;
}
FOR(i,1,ol){
if(ok[i]>=(1<<len[1])) break;
f[1][i]=1;
if(w==1) s=(s+1)%mod;
}
FOR(i,2,w) FOR(j,1,ol){
if(ok[j]>=(1<<len[i])) break;
f[i][j]=0;
FOR(k,1,ol){
if(ok[k]>=(1<<len[i-1])) break;
if(!(ok[j]&ok[k])) f[i][j]=(f[i][j]+f[i-1][k])%mod;
}
if(i==w) s=(s+f[i][j])%mod;
}
return s;
}
int main(){
n=read();
FOR(i,0,2047) if(check(i)) ok[++ol]=i;
FOR(i,1,n) if(!vis[i]) ans=1ll*ans*solve(i)%mod;
printf("%d\n",ans);
}
[HNOI2012]集合选数(构造,状态压缩,DP)的更多相关文章
- [BZOJ2734][HNOI2012] 集合选数(状态压缩+思维)
Description 题目链接 Solution 可以根据条件构造出一个矩阵, 1 3 9 27 81... 2 6 18.... 4 12 36... 这个矩阵满足\(G[i][1]=G[i-1] ...
- 【BZOJ2734】【HNOI2012】集合选数(状态压缩,动态规划)
[BZOJ2734][HNOI2012]集合选数(状态压缩,动态规划) 题面 Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所 ...
- BZOJ 2734 洛谷 3226 [HNOI2012]集合选数【状压DP】【思维题】
[题解] 思维题,看了别人的博客才会写. 写出这样的矩阵: 1,3,9,... 2,6,18,... 4,12.36,... 8,24,72,... 我们要做的就是从矩阵中选出一些数字,但是不能选相邻 ...
- [HNOI2012]集合选数(状压DP+构造)
题目要求若出现x,则不能出现2x,3x 所以我们考虑构造一个矩阵 \(1\ 2\ 4 \ 8--\) \(3\ 6\ 12\ 24--\) \(9\ 18\ 36--\) \(--\) 不难发现,对于 ...
- BZOJ3724 [HNOI2012]集合选数 【状压dp】
题目链接 BZOJ3724 题解 构造矩阵的思路真的没想到 选\(x\)就不能选\(2x\)和\(3x\),会发现实际可以转化为矩阵相邻两项 \[\begin{matrix}1 & 3 &am ...
- BZOJ2734 HNOI2012集合选数(状压dp)
完全想不到的第一步是构造一个矩阵,使得每行构成公比为3的等比数列,每列构成公比为2的等比数列.显然矩阵左上角的数决定了这个矩阵,只要其取遍所有既不被2也不被3整除的数那么所得矩阵的并就是所有的数了,并 ...
- bzoj2734:[HNOI2012]集合选数(状压DP)
菜菜的喵喵题~ 化序列为矩阵!化腐朽为神奇!左上角为1,往右每次*3,往下每次*2,这样子就把问题转化成了在矩阵里选不相邻的数有几种可能. 举个矩阵的例子 1 3 9 27 2 6 18 54 4 1 ...
- BZOJ_2734_[HNOI2012]集合选数_构造+状压DP
BZOJ_2734_[HNOI2012]集合选数_构造+状压DP 题意:<集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x ...
- bzoj 2734: [HNOI2012]集合选数 状压DP
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 560 Solved: 321[Submit][Status ...
- [HNOI2012]集合选数 --- 状压DP
[HNOI2012]集合选数 题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出\({1,2,3,4,5}\)的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x ...
随机推荐
- 大话设计模式Python实现-观察者模式
观察者模式(发布-订阅模式 Publish Subscribe Pattern):定义了一种一对多的关系,让多个观察对象同时监听一个主题对象,当主题对象状态发生变化时会通知所有观察者,是它们能够自动更 ...
- LeetCode 26:删除排序数组中的重复项 Remove Duplicates from Sorted Array
给定一个排序数组,你需要在原地删除重复出现的元素,使得每个元素只出现一次,返回移除后数组的新长度. 不要使用额外的数组空间,你必须在原地修改输入数组并在使用 O(1) 额外空间的条件下完成. Give ...
- redis命令之 ----Set(集合)
SADD SADD key member [member ...] 将一个或多个 member 元素加入到集合 key 当中,已经存在于集合的 member 元素将被忽略. 假如 key 不存在,则创 ...
- mysql批量更新数据(性能优化)--第二种方式
Spring+Mybatis 手动控制事务 参考: https://blog.csdn.net/qq_41750175/article/details/87621170 public boolean ...
- 简单的python GUI例子
写一个简单的界面很容易,即使是什么都不了解的情况下,这个文本转载了最简单的界面编写,下个文本介绍了TK的简单但具体的应用 在python中创建一个窗口,然后显示出来. from Tkinter imp ...
- Eureka自我保护机制源码解析
默认情况下,当EurekaServer在一定时间内(默认90秒)没有接收到某个客户端实例的心跳,EurekaServer将会注销该实例.但是当网络分区故障发生时,客户端与EurekaServer之间无 ...
- addEventListener和JavaScript的事件机制
JavaScript的事件处理分为两个阶段: 捕获阶段:从根节点向event.target层层传递 冒泡阶段:从event.target向根节点层层传递 addEventListener(eventN ...
- React组件安装使用和生命周期函数
React安装在使用react时 需要安装 两个模块 react react-dom 初始化时 需要用到react-dom中的render方法 具体如下: import ReactDOM from & ...
- 使用redis实现程序或者服务的高可用
使用redis实现程序或者服务的高可用,就是将某一程序或服务部署在不同服务器上,或者是跨机房部署,当运行服务的服务器挂了之后,其他服务器上的该服务能立马顶上,这里我简单的使用redis实现这一目的. ...
- 10. [mmc subsystem] host(第四章)——host实例(sdhci-msm说明)
一.说明 sdhci-msm是指高通的mmc host,其使用了标准SDHC标准.故可以使用前面说的<host(第二章)--sdhci>和<host(第三章)--sdhci-pltf ...