[LeetCode] 277. Find the Celebrity 寻找名人
Suppose you are at a party with n people (labeled from 0 to n - 1) and among them, there may exist one celebrity. The definition of a celebrity is that all the other n - 1 people know him/her but he/she does not know any of them.
Now you want to find out who the celebrity is or verify that there is not one. The only thing you are allowed to do is to ask questions like: "Hi, A. Do you know B?" to get information of whether A knows B. You need to find out the celebrity (or verify there is not one) by asking as few questions as possible (in the asymptotic sense).
You are given a helper function bool knows(a, b)which tells you whether A knows B. Implement a function int findCelebrity(n). There will be exactly one celebrity if he/she is in the party. Return the celebrity's label if there is a celebrity in the party. If there is no celebrity, return -1.
Example 1:
Input: graph = [
[1,1,0],
[0,1,0],
[1,1,1]
]
Output: 1
Explanation: There are three persons labeled with 0, 1 and 2. graph[i][j] = 1 means person i knows person j, otherwise graph[i][j] = 0 means person i does not know person j. The celebrity is the person labeled as 1 because both 0 and 2 know him but 1 does not know anybody.
Example 2:
Input: graph = [
[1,0,1],
[1,1,0],
[0,1,1]
]
Output: -1
Explanation: There is no celebrity.
Note:
- The directed graph is represented as an adjacency matrix, which is an
n x nmatrix wherea[i][j] = 1means personiknows personjwhilea[i][j] = 0means the contrary. - Remember that you won't have direct access to the adjacency matrix.
这道题让我们在一群人中寻找名人,所谓名人就是每个人都认识他,他却不认识任何人,限定了只有1个或0个名人,给定了一个 API 函数,输入a和b,用来判断a是否认识b,让我们尽可能少的调用这个函数,来找出人群中的名人。博主最先想的方法是建立个一维数组用来标记每个人的名人候选状态,开始均初始化为 true,表示每个人都是名人候选人,然后一个人一个人的验证其是否为名人,对于候选者i,遍历所有其他人j,如果i认识j,或者j不认识i,说明i不可能是名人,那么标记其为 false,然后验证下一个候选者,反之如果i不认识j,或者j认识i,说明j不可能是名人,标记之。对于每个候选者i,如果遍历了一圈而其候选者状态仍为 true,说明i就是名人,返回即可,如果遍历完所有人没有找到名人,返回 -1,参见代码如下:
解法一:
bool knows(int a, int b);
class Solution {
public:
int findCelebrity(int n) {
vector<bool> candidate(n, true);
for (int i = ; i < n; ++i) {
for (int j = ; j < n; ++j) {
if (candidate[i] && i != j) {
if (knows(i, j) || !knows(j, i)) {
candidate[i] = false;
break;
} else {
candidate[j] = false;
}
}
}
if (candidate[i]) return i;
}
return -;
}
};
我们其实可以不用一维数组来标记每个人的状态,对于不是名人的i,直接 break,继续检查下一个,但是由于没有标记后面的候选人的状态,所以有可能会重复调用一些 knows 函数,所以下面这种方法虽然省了空间,但是调用 knows 函数的次数可能会比上面的方法次数要多,参见代码如下:
解法二:
bool knows(int a, int b);
class Solution {
public:
int findCelebrity(int n) {
for (int i = , j = ; i < n; ++i) {
for (j = ; j < n; ++j) {
if (i != j && (knows(i, j) || !knows(j, i))) break;
}
if (j == n) return i;
}
return -;
}
};
下面这种方法是网上比较流行的一种方法,设定候选人 res 为0,原理是先遍历一遍,对于遍历到的人i,若候选人 res 认识i,则将候选人 res 设为i,完成一遍遍历后,来检测候选人 res 是否真正是名人,如果判断不是名人,则返回 -1,如果并没有冲突,返回 res,参见代码如下:
解法三:
bool knows(int a, int b);
class Solution {
public:
int findCelebrity(int n) {
int res = ;
for (int i = ; i < n; ++i) {
if (knows(res, i)) res = i;
}
for (int i = ; i < n; ++i) {
if (res != i && (knows(res, i) || !knows(i, res))) return -;
}
return res;
}
};
由热心网友 fgvlty 提醒,还可以进一步减少 API 的调用量,找候选者的方法跟上面相同,但是在验证的时候,分为两段,先验证候选者前面的所有人,若候选者认识任何人,或者任何人不认识候选者,直接返回 -1。再验证候选者后面的人,这时候只需要验证是否有人不认识候选者就可以了,因为在最开始找候选者的时候就已经保证了候选者不会认识后面的任何人,参见代码如下:
解法四:
bool knows(int a, int b);
class Solution {
public:
int findCelebrity(int n) {
int res = ;
for (int i = ; i < n; ++i) {
if (knows(res, i)) res = i;
}
for (int i = ; i < res; ++i) {
if (knows(res, i) || !knows(i, res)) return -;
}
for (int i = res + ; i < n; ++i) {
if (!knows(i, res)) return -;
}
return res;
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/277
类似题目:
Find the Town Judge
参考资料:
https://leetcode.com/problems/find-the-celebrity/
https://leetcode.com/problems/find-the-celebrity/discuss/71227/Java-Solution.-Two-Pass
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] 277. Find the Celebrity 寻找名人的更多相关文章
- [leetcode]277. Find the Celebrity 找名人
Suppose you are at a party with n people (labeled from 0 to n - 1) and among them, there may exist o ...
- [leetcode]277. Find the Celebrity谁是名人
Suppose you are at a party with n people (labeled from 0 to n - 1) and among them, there may exist o ...
- 名人问题 算法解析与Python 实现 O(n) 复杂度 (以Leetcode 277. Find the Celebrity为例)
1. 题目描述 Problem Description Leetcode 277. Find the Celebrity Suppose you are at a party with n peopl ...
- [LeetCode] Find the Celebrity 寻找名人
Suppose you are at a party with n people (labeled from 0 to n - 1) and among them, there may exist o ...
- LeetCode 277. Find the Celebrity (找到明星)$
Suppose you are at a party with n people (labeled from 0 to n - 1) and among them, there may exist o ...
- [LeetCode#277] Find the Celebrity
Problem: Suppose you are at a party with n people (labeled from 0 to n - 1) and among them, there ma ...
- Leetcode之二分法专题-287. 寻找重复数(Find the Duplicate Number)
Leetcode之二分法专题-287. 寻找重复数(Find the Duplicate Number) 给定一个包含 n + 1 个整数的数组 nums,其数字都在 1 到 n 之间(包括 1 和 ...
- Leetcode之二分法专题-744. 寻找比目标字母大的最小字母(Find Smallest Letter Greater Than Target)
Leetcode之二分法专题-744. 寻找比目标字母大的最小字母(Find Smallest Letter Greater Than Target) 给定一个只包含小写字母的有序数组letters ...
- Leetcode之二分法专题-154. 寻找旋转排序数组中的最小值 II(Find Minimum in Rotated Sorted Array II)
Leetcode之二分法专题-154. 寻找旋转排序数组中的最小值 II(Find Minimum in Rotated Sorted Array II) 假设按照升序排序的数组在预先未知的某个点上进 ...
随机推荐
- Entity Framework Core 练习参考
项目地址:https://gitee.com/dhclly/IceDog.EFCore 项目介绍 对 Microsoft EntityFramework Core 框架的练习测试 参考文档教程 官方文 ...
- 分布式中session共享的解决方案:spring-session
Session是客户端与服务器通讯会话跟踪技术,是服务器与客户端保持整个通讯的会话基本信息.客户端在第一次访问服务器的时候,服务端会响应一个sessionId并且将它存入到本地的Cookie中,在之后 ...
- .NET Core 学习笔记之 WebSocketsSample
1. 服务端 代码如下: Program: using Microsoft.AspNetCore; using Microsoft.AspNetCore.Hosting; namespace WebS ...
- 【转】asp.Net Core免费开源分布式异常日志收集框架Exceptionless安装配置以及简单使用图文教程
最近在学习张善友老师的NanoFabric 框架的时了解到Exceptionless : https://exceptionless.com/ !因此学习了一下这个开源框架!下面对Exceptionl ...
- WPF 通过EventTrigger修改鼠标样式
难倒是不难. 除去eventtrigger之外还有别的触发器可以实现. 这个主要是难在对xaml的数据理解上. 代码实现 <Button Content=" > <Butt ...
- springboot只能一个main方法解决办法
pom.xml修改properties,增加这行 <start-class>com.eshore.main.SpringBootStarter</start-class> 或者 ...
- Spring Boot 2.0 快速集成整合消息中间件 Kafka
欢迎关注个人微信公众号: 小哈学Java, 每日推送 Java 领域干货文章,关注即免费无套路附送 100G 海量学习.面试资源哟!! 个人网站: https://www.exception.site ...
- Python collectioins
collections是一个python的内建模块,提供了一些除了dict.list.tuble.等常见的数据类型之外的一些集合类 参考链接:https://www.liaoxuefeng.com/w ...
- JPA使用Specification构建动态查询
封装Specification查询条件,在Spring Data JPA 2.0以前使用 Specifications 这个辅助类来操作where.not.and和or连接,在2.0版本以后这个类会被 ...
- Mobx总结以及mobx和redux区别
Mobx解决的问题 传统react使用的数据管理库为Redux.Redux要解决的问题是统一数据流,数据流完全可控并可追踪.要实现该目标,便需要进行相关的约束 Redux由此引出dispatch ac ...