并发控制是数据库理论里面最难的课题之一

并发控制首先了解一下事务,transaction

定义如下,

其实transaction关键是,要满足ACID属性,

左边的正式的定义,由于的intuitive的理解
其中可能Consistency比较难理解一下,其他都比较直观,对于单机数据库而言consistency其实不是个显著的问题,但对于分布式数据库这就是个主要问题

那么问题就是如何设计让Transaction满足ACID?

一种简单的方法就是,Strawman System

串行执行保障consistency和isolate,整个库的copy保障atomicity,这个方法早期用在SQLlite中,它主要是用在嵌入式场景,访问量和数据量都很小

但这个方法的性能太低

下面就看看对ACID的各个属性,一般是如何设计来满足的

Atomicity

原子性问题,

最常用的方法是Log,Undo&Redo,这样如果事务abort,可以根据undo日志来回滚,达到原子性保证

还有种方法是Shadow Paging,也是MVCC,我修改的时候,把要修改的page复制一份去改,典型的使用是CouchDB

Consistency

首先Consistency是逻辑的,什么意思?
就是和实现无关,做一笔转账,两边的数据在逻辑上应该是对的,无论你底层是如何实现的,用何种数据结构

所以database consistency是指,做过的更新,在更新后,无论从什么地方角度去看,他都应该是一样的,比如在不同的transaction中,不同的client,不同的。。。
对于单机数据库,这其实是比较容易达成的

transaction consistency,是指应用层面的,外部的一致性,不光是数据库内部的,这种一致性需要应用自己去保障

Isolation

隔离性,每个transaction执行的时候,不会受到其他的transaction的干扰

因为我们要提高数据库的性能,所以不可能让transaction串行执行,所以transaction一定是并发执行的,这样一定会存在interleave的问题

因为把transaction在物理上去做隔离一定是比较低效的,所以实际的做法都是让各个transaction interleave的执行,但其中要注意避免冲突,conflict

避免冲突一般都是要加锁,所以自然会有悲观和乐观锁的分别

这里先不谈怎么避免冲突

我们先看下interleave执行会带来哪些问题?

对于这个例子,两个transaction,一个是转账,一个是加利息

T1,T2,如果顺序执行的结果是一样的

这里注意,T1,T2本身谁先执行,这个是要应用控制的,对于数据库而言,无论谁先执行都是对的

那么可以看到interleave执行的结果可能是good,也可能是bad

如果判断是好是坏?这个很直觉,和串行执行结果一样就是好的,否则就是坏的

所以这里给出一堆概念,只是就是想说明,你interleave执行的结果一定要和串行执行一样

这样给transaction调度带来很大的flexible,因为只要满足serializable schedule,就可以任意的并发调度

Serializable Schedule的定义,一个Schedule和任意一个Serial ScheduleEquivalent的,即执行结果相同

那么我们怎么判断一个sechdule是否是serializable?

我们先看看,如果不满足serializable schedule,会发生什么?Conflict

冲突的双方一定是在不同的transaction中,并且其中至少有一个是write操作

所以Conflict分为3种,read-read是不会冲突的

那么现在的思路,我们只要去看看sechdule中是否存在这些conflict,如果不存在,我们就可以认为这个sechdule是serializable

形式化的表达就是,如果S是和任意一个serial schedule冲突等价的,那么S就是conflict serializable;因为如果存在上面的冲突就不可能和serial schedule冲突等价

这里需要注意,我们判断冲突的时候,一般只会看是否同时对一个object有读写,比如对于Unrepeatable Read,我们不会看后面还是不是有那个read,或者对于dirty reads,如果后面没有abort,也不会有问题;
所以这里是充分但不必要条件,不满足conflict serializable,也不一定就得到错误的结果,但是满足,得到的结果一定是正确的

下面就要找一种方法,可以判断S是否是conflict serializable

我们可以把任意不冲突的operation进行swap,看看最终能不能变成一个serial schedule

例子,

这个方法看着比较简单,但如果transaction比较多的话,会很难操作

所以需要一个更形式化的方法,称为依赖图

其实就是把冲突的依赖用线连起来,如果有环,说明是无法conflict serializable的

比如,你看右边的例子,是无法conflict serializable的

而example2,是可以conflict serializable,因为依赖图里面没有环

前面讲的都是Conflict Serialization

还有一种更为宽泛的叫做,View Serialization

定义很难理解,从例子上看,就是有些不符合conflict serialization的case,算出来结果也是对的,比如例子里面,因为是blind write,所以A的结果只会有最后一个write决定,所以这个schedule还是可以强行等价于一个serial schedule的

View Serialization可以比Conflict Serialization有更多,更灵活的schedule,但是这个难于判断,很难实现

所以总体来说,关系是这样的,越大调度越灵活,但是机制和判断越复杂

Durability

CMU Database Systems - Concurrency Control Theory的更多相关文章

  1. CMU Database Systems - Indexes

    这章主要描述索引,即通过什么样的数据结构可以更加快速的查询到数据 介绍Hash Tables,B+tree,SkipList 以及索引的并行访问 Hash Tables hash tables可以实现 ...

  2. CMU Database Systems - Timestamp Ordering Concurrency Control

    2PL是悲观锁,Pessimistic,这章讲乐观锁,Optimistic,单机的,非分布式的 Timestamp Ordering,以时间为序,这个是非常自然的想法,按每个transaction的时 ...

  3. CMU Database Systems - Database Recovery

    数据库数据丢失的典型场景如下, 数据commit后,还没有来得及flush到disk,这时候crash就会丢失数据 当然这只是fail的一种情况,DataBase Recovery要讨论的是,在各种f ...

  4. CMU Database Systems - Storage and BufferPool

    Database Storage 存储分为volatile和non-volatile,越快的越贵越小 那么所以要解决的第一个问题就是,如果尽量在有限的成本下,让读写更快些 意思就是,尽量读写volat ...

  5. CMU Database Systems - Two-phase Locking

    首先锁是用来做互斥的,解决并发执行时的数据不一致问题 如图会导致,不可重复读 如果这里用lock就可以解决,数据库里面有个LockManager来作为master,负责锁的记录和授权 数据库里面的基本 ...

  6. CMU Database Systems - Distributed OLTP & OLAP

    OLTP scale-up和scale-out scale-up会有上限,无法不断up,而且相对而言,up升级会比较麻烦,所以大数据,云计算需要scale-out scale-out,就是分布式数据库 ...

  7. CMU Database Systems - MVCC

    MVCC是一种用空间来换取更高的并发度的技术 对同一个对象不去update,而且记录下每一次的不同版本的值 存在不会消失,新值并不能抹杀原先的存在 所以update操作并不是对世界的真实反映,这是一种 ...

  8. CMU Database Systems - Embedded Database Logic

    正常应用和数据库交互的过程是这样的, 其实我们也可以把部分应用逻辑放到DB端去执行,来提升效率 User-defined Function Stored Procedures Triggers Cha ...

  9. CMU Database Systems - Parallel Execution

    并发执行,主要为了增大吞吐,降低延迟,提高数据库的可用性 先区分一组概念,parallel和distributed的区别 总的来说,parallel是指在物理上很近的节点,比如本机的多个线程或进程,不 ...

随机推荐

  1. SQL PLUS 远程连接数据库

    -- SQL PLUS 远程连接Oracle数据库(WINDOWS+SQL PLUS)命令:用户名/密码@ip地址[:端口]/service_name [as sysdba] EG: ORCL/ORC ...

  2. MyBatis-Migrations安装和使用

    这里本人是在MAC机上安装使用 1. 下载 mybatis-migraions安装包,地址:https://www.oschina.net/news/94218/mybatis-migrations- ...

  3. [openssl] 使用openssl生成证书

    使用openssl生成带域名的证书,SAN,subjectAltName, subject alternative name, DNS. 1. 生成私钥 openssl genrsa - 2. 编写配 ...

  4. 关于C++模板不能分离编译的问题思考

    C++模板不支持分离编译的思考 前言 在我初入程序员这行时,因为学生阶段只写一些简单的考试题,所以经常是将声明和实现统一写到一个文件中,导致同事在用我的代码时一脸懵逼,因此还有一段悲惨的往事. 为什么 ...

  5. egg 完整实例 增删改查MongoDB,websocket

    项目地址 github.com/richard1015… 技术栈 eggjs.MongoDB.swagger.websocket.Amap 演示地址: 前台 school.zhuzhida.vip A ...

  6. 用java刷剑指offer(二叉树中和为某一值的路径)

    题目描述 输入一颗二叉树的跟节点和一个整数,打印出二叉树中结点值的和为输入整数的所有路径.路径定义为从树的根结点开始往下一直到叶结点所经过的结点形成一条路径.(注意: 在返回值的list中,数组长度大 ...

  7. DNS子域授权,区域传送

    dig 命令 +recurse  递归查询 默认    +norecurse 不递归查询 dig +recurse  -t A   www.baidu.com @127.0.0.1 dig  -t a ...

  8. springboot学习笔记(一)

    springboot案例(一) Application.java package com.xdr.spring; import org.springframework.boot.SpringAppli ...

  9. 扫雷小游戏PyQt5开发【附源代码】

    也没啥可介绍哒,扫雷大家都玩过. 雷的分布算法也很简单,就是在雷地图(map:二维数组)中,随机放雷,然后这个雷的8个方位(上下左右.四个对角)的数字(非雷的标记.加一后不为雷的标记)都加一. 如何判 ...

  10. 行为型模式(一) 模板方法模式(Template Method)

    一.动机(Motivate) "模板方法",就是有一个方法包含了一个模板,这个模板是一个算法.在我们的现实生活中有很多例子可以拿来说明这个模式,就拿吃饺子这个事情来说,要想吃到饺子 ...