You are asked to cut off trees in a forest for a golf event. The forest is represented as a non-negative 2D map, in this map:

  1. 0 represents the obstacle can't be reached.
  2. 1 represents the ground can be walked through.
  3. The place with number bigger than 1 represents a tree can be walked through, and this positive number represents the tree's height.

You are asked to cut off all the trees in this forest in the order of tree's height - always cut off the tree with lowest height first. And after cutting, the original place has the tree will become a grass (value 1).

You will start from the point (0, 0) and you should output the minimum steps you need to walk to cut off all the trees. If you can't cut off all the trees, output -1 in that situation.

You are guaranteed that no two trees have the same height and there is at least one tree needs to be cut off.

Example 1:

Input:
[
[1,2,3],
[0,0,4],
[7,6,5]
]
Output: 6

Example 2:

Input:
[
[1,2,3],
[0,0,0],
[7,6,5]
]
Output: -1

Example 3:

Input:
[
[2,3,4],
[0,0,5],
[8,7,6]
]
Output: 6
Explanation: You started from the point (0,0) and you can cut off the tree in (0,0) directly without walking. 

Hint: size of the given matrix will not exceed 50x50.

为一个高尔夫赛事砍掉森林中所有高度大于1的树,要按从低到高的顺序砍。森林用一个2D的map来表示,0代表障碍物,无法通过。1代表地面,可以通过。其他整数代表是树和相应的高度,可以通过。

解法:把是树的节点,按树高从低到高排序。然后从第一棵树开始,每次都用BFS求出和下一棵树之间的最短路径,然后累计路径和为结果。如果不能走到下一棵树,则返回-1。

Python:

class Solution(object):
def cutOffTree(self, forest):
"""
:type forest: List[List[int]]
:rtype: int
"""
def dot(p1, p2):
return p1[0]*p2[0]+p1[1]*p2[1] def minStep(p1, p2):
min_steps = abs(p1[0]-p2[0])+abs(p1[1]-p2[1])
closer, detour = [p1], []
lookup = set()
while True:
if not closer: # cannot find a path in the closer expansions
if not detour: # no other possible path
return -1
# try other possible paths in detour expansions with extra 2-step cost
min_steps += 2
closer, detour = detour, closer
i, j = closer.pop()
if (i, j) == p2:
return min_steps
if (i, j) not in lookup:
lookup.add((i, j))
for I, J in (i+1, j), (i-1, j), (i, j+1), (i, j-1):
if 0 <= I < m and 0 <= J < n and forest[I][J] and (I, J) not in lookup:
is_closer = dot((I-i, J-j), (p2[0]-i, p2[1]-j)) > 0
(closer if is_closer else detour).append((I, J))
return min_steps m, n = len(forest), len(forest[0])
min_heap = []
for i in xrange(m):
for j in xrange(n):
if forest[i][j] > 1:
heapq.heappush(min_heap, (forest[i][j], (i, j))) start = (0, 0)
result = 0
while min_heap:
tree = heapq.heappop(min_heap)
step = minStep(start, tree[1])
if step < 0:
return -1
result += step
start = tree[1]
return result  

C++:

class Solution {
public:
int cutOffTree(vector<vector<int>>& forest) {
int m = forest.size(), n = forest[0].size(), res = 0, row = 0, col = 0;
vector<vector<int>> trees;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (forest[i][j] > 1) trees.push_back({forest[i][j], i, j});
}
}
sort(trees.begin(), trees.end());
for (int i = 0; i < trees.size(); ++i) {
int cnt = helper(forest, row, col, trees[i][1], trees[i][2]);
if (cnt == -1) return -1;
res += cnt;
row = trees[i][1];
col = trees[i][2];
}
return res;
}
int helper(vector<vector<int>>& forest, int row, int col, int treeRow, int treeCol) {
if (row == treeRow && col == treeCol) return 0;
int m = forest.size(), n = forest[0].size(), cnt = 0;
queue<pair<int, int>> q{{{row, col}}};
vector<vector<bool>> visited(m, vector<bool>(n, false));
vector<vector<int>> dirs{{-1,0},{0,1},{1,0},{0,-1}};
while (!q.empty()) {
++cnt;
for (int i = q.size() - 1; i >= 0; --i) {
auto t = q.front(); q.pop();
for (auto dir : dirs) {
int x = t.first + dir[0], y = t.second + dir[1];
if (x < 0 || x >= m || y < 0 || y >= n || visited[x][y] || forest[x][y] == 0) continue;
if (x == treeRow && y == treeCol) return cnt;
visited[x][y] = true;
q.push({x, y});
}
}
}
return -1;
}
};

  

All LeetCode Questions List 题目汇总

[LeetCode] 675. Cut Off Trees for Golf Event 为高尔夫赛事砍树的更多相关文章

  1. [LeetCode] Cut Off Trees for Golf Event 为高尔夫赛事砍树

    You are asked to cut off trees in a forest for a golf event. The forest is represented as a non-nega ...

  2. LeetCode 675. Cut Off Trees for Golf Event

    原题链接在这里:https://leetcode.com/problems/cut-off-trees-for-golf-event/description/ 题目: You are asked to ...

  3. [LeetCode] 675. Cut Off Trees for Golf Event_Hard tag: BFS

    You are asked to cut off trees in a forest for a golf event. The forest is represented as a non-nega ...

  4. 675. Cut Off Trees for Golf Event

    // Potential improvements: // 1. we can use vector<int> { h, x, y } to replace Element, sortin ...

  5. LeetCode - Cut Off Trees for Golf Event

    You are asked to cut off trees in a forest for a golf event. The forest is represented as a non-nega ...

  6. [Swift]LeetCode675. 为高尔夫比赛砍树 | Cut Off Trees for Golf Event

    You are asked to cut off trees in a forest for a golf event. The forest is represented as a non-nega ...

  7. Leetcode 675.为高尔夫比赛砍树

    为高尔夫比赛砍树 你被请来给一个要举办高尔夫比赛的树林砍树. 树林由一个非负的二维数组表示, 在这个数组中: 0 表示障碍,无法触碰到. 1 表示可以行走的地面. 比1大的数 表示一颗允许走过的树的高 ...

  8. LeetCode:Unique Binary Search Trees I II

    LeetCode:Unique Binary Search Trees Given n, how many structurally unique BST's (binary search trees ...

  9. [LeetCode系列]卡特兰数(Catalan Number) 在求解独特二叉搜寻树(Unique Binary Search Tree)中的应用分析

    本文原题: LeetCode. 给定 n, 求解独特二叉搜寻树 (binary search trees) 的个数. 什么是二叉搜寻树? 二叉查找树(Binary Search Tree),或者是一棵 ...

随机推荐

  1. django项目登录中使用图片验证码

    应用下创建untils文件夹放置封装图片验证码的函数 创建validCode.py文件定义验证码规则 import random def get_random_color(): return (ran ...

  2. DT资讯文章生成静态出现MySQL Error解决办法

    今天有个朋友的DT系统生成静态出现 MySQL Query:SELECT * FROM [pre]article_21 WHERE status=3 and itemid<>516548 ...

  3. 使用Apache commons-maths3-3.6.1.jar包进行简单的数据统计分析(java)

    使用maths3函数进行简单的数据统计性描述: 使用场景:本地,直接运行就可以: 具体后面有个性化的需求,可以再修改~ package com; import org.apache.commons.l ...

  4. git添加doc文件维护

    原文地址:https://www.cnblogs.com/yezuhui/p/6853271.html 说明: git 一般只能对纯文本文件进行版本控制,但是如果有其他中间转化软件的协助,就可以对任意 ...

  5. [转贴] bu AU3脚本录制工具(软件自动化安装的最简便的方法)

    http://www.autoitx.com/thread-15419-1-1.html 1,打开一个.au3的文档或者新建一个.au3的文档,用SciTE编辑; 2,按下ALT+F6,弹出下面的对话 ...

  6. /etc/rc.local

    /etc/rc.local是/etc/rc.d/rc.local的软连接 应用于指定开机启动的进程 开机启动不生效,则首先需要检查下/etc/rc.d/rc.local是否具有可执行权限 在配置文件中 ...

  7. 关于html异步加载外部json文件报错问题

    一. HTML代码如下: 参考网站(echarts-JSON请求数据):https://blog.csdn.net/you23hai45/article/details/51585506 <!D ...

  8. Android App专项测试

    https://www.jianshu.com/p/141b84f14505 http://www.cnblogs.com/finer/p/9601140.html 专项 概念 adb命令 App启动 ...

  9. 第12组 Beta测试(5/5)

    Header 队名:To Be Done 组长博客 作业博客 团队项目进行情况 燃尽图(组内共享) 展示Git当日代码/文档签入记录(组内共享) 注: 由于GitHub的免费范围内对多人开发存在较多限 ...

  10. Koa Session的使用

    Session 简单介绍 session 是另一种记录客户状态的机制,不同的是 Cookie 保存在客户端浏览器中,而 session 保存在服务器上. Session 的工作流程 当浏览器访问服务器 ...