Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.

According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself).”

Given binary search tree:  root = [6,2,8,0,4,7,9,null,null,3,5]

        _______6______
/ \
___2__ ___8__
/ \ / \
0 _4 7 9
/ \
3 5

Example 1:

Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
Output: 6
Explanation: The LCA of nodes 2 and 8 is 6.

Example 2:

Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
Output: 2
Explanation: The LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself
according to the LCA definition.

Note:

  • All of the nodes' values will be unique.
  • p and q are different and both values will exist in the BST.

求二叉搜索树(BST)的最近公共祖先(LCA)。最近公共祖先是指在一个树或者有向无环图中同时拥有v和w作为后代的最深的节点。

解法1:递归,

1. P, Q都比root小,则LCA在左树,我们继续在左树中寻找LCA

2. P, Q都比root大,则LCA在右树,我们继续在右树中寻找LCA

3. 其它情况,表示P,Q在root两边,或者二者其一是root,或者都是root,这些情况表示root就是LCA,直接返回root即可。

解法2: 迭代

判断标准同解法1,只是用迭代来实现。

Java:

public class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if(root.val > p.val && root.val > q.val) return lowestCommonAncestor(root.left, p, q);
if(root.val < p.val && root.val < q.val) return lowestCommonAncestor(root.right, p, q);
return root;
}
}

Java:

public class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
//发现目标节点则通过返回值标记该子树发现了某个目标结点
if(root == null || root == p || root == q) return root;
//查看左子树中是否有目标结点,没有为null
TreeNode left = lowestCommonAncestor(root.left, p, q);
//查看右子树是否有目标节点,没有为null
TreeNode right = lowestCommonAncestor(root.right, p, q);
//都不为空,说明做右子树都有目标结点,则公共祖先就是本身
if(left!=null&&right!=null) return root;
//如果发现了目标节点,则继续向上标记为该目标节点
return left == null ? right : left;
}
}  

Python:

class Solution:
# @param {TreeNode} root
# @param {TreeNode} p
# @param {TreeNode} q
# @return {TreeNode}
def lowestCommonAncestor(self, root, p, q):
s, b = sorted([p.val, q.val])
while not s <= root.val <= b:
# Keep searching since root is outside of [s, b].
root = root.left if s <= root.val else root.right
# s <= root.val <= b.
return root

C++:

class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if (!root) return NULL;
if (root->val > max(p->val, q->val))
return lowestCommonAncestor(root->left, p, q);
else if (root->val < min(p->val, q->val))
return lowestCommonAncestor(root->right, p, q);
else return root;
}
};

C++:

class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
while (true) {
if (root->val > max(p->val, q->val)) root = root->left;
else if (root->val < min(p->val, q->val)) root = root->right;
else break;
}
return root;
}
};

  

 

类似题目:

[LeetCode] 236. Lowest Common Ancestor of a Binary Tree 二叉树的最近公共祖先

 

All LeetCode Questions List 题目汇总 

[LeetCode] 235. Lowest Common Ancestor of a Binary Search Tree 二叉搜索树的最近公共祖先的更多相关文章

  1. 235 Lowest Common Ancestor of a Binary Search Tree 二叉搜索树的最近公共祖先

    给定一棵二叉搜索树, 找到该树中两个指定节点的最近公共祖先. 详见:https://leetcode.com/problems/lowest-common-ancestor-of-a-binary-s ...

  2. [LeetCode] 235. Lowest Common Ancestor of a Binary Search Tree 二叉搜索树的最小共同父节点

    Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...

  3. [LeetCode] Lowest Common Ancestor of a Binary Search Tree 二叉搜索树的最小共同父节点

    Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...

  4. leetcode 235. Lowest Common Ancestor of a Binary Search Tree 236. Lowest Common Ancestor of a Binary Tree

    https://www.cnblogs.com/grandyang/p/4641968.html http://www.cnblogs.com/grandyang/p/4640572.html 利用二 ...

  5. LeetCode 235. Lowest Common Ancestor of a Binary Search Tree (二叉搜索树最近的共同祖先)

    Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...

  6. leetcode 235. Lowest Common Ancestor of a Binary Search Tree

    Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...

  7. (easy)LeetCode 235.Lowest Common Ancestor of a Binary Search Tree

    Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...

  8. Java [Leetcode 235]Lowest Common Ancestor of a Binary Search Tree

    题目描述: Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in ...

  9. Leetcode 235 Lowest Common Ancestor of a Binary Search Tree 二叉树

    给定一个二叉搜索树的两个节点,找出他们的最近公共祖先,如, _______6______ / \ ___2__ ___8__ / \ / \ 0 4 7 9 / \ 3 5 2和8的最近公共祖先是6, ...

随机推荐

  1. Kotlin函数使用综述与显式返回类型分析

    位置参数与具名参数: 继续接着上一次https://www.cnblogs.com/webor2006/p/11498842.html的方法参数学习,再定义一个函数来说明具名参数的问题: 调用一下,先 ...

  2. Thinkphp3.2下导入所需的类库 同java的Import 本函数有缓存功能

    * 导入所需的类库 同java的Import 本函数有缓存功能 * @param string $class 类库命名空间字符串 * @param string $baseUrl 起始路径 * @pa ...

  3. RDD的Lineage血统

    1.RDD血统:数据容错,发生错误,可以进行重算恢复.Lineage记录的是特定数据的 Transformation 转换操作. 为了保证RDD中数据的鲁棒性,RDD数据集通过所谓的血统关系(Line ...

  4. Java方法覆盖重写

    方法覆盖重写注意事项: 1.必须保证方法名相同,返回值也相同    @Override:写在方法前面,用来检测方法的覆盖重写是否有效,这个注解不是必要的,就算不写,方法覆盖重写符合要求也是正确的 2. ...

  5. 程序复杂程度(步长) N

    我们知道计算机在运算时速度是固定的,程序运行的时间就与程序复杂程度有关.例如我们计算1-10相加 与 1-100相加,后者就要比前者多10倍时间. 例1  找出n个数中最大的一个  max= n[0] ...

  6. WinDbg常用命令系列---源代码操作相关命令

    lsf, lsf- (Load or Unload Source File) lsf和lsf-命令加载或卸载源文件. lsf Filename lsf- Filename 参数: Filename指定 ...

  7. Python 下载超大文件

    使用python下载超大文件, 直接全部下载, 文件过大, 可能会造成内存不足, 这时候要使用requests 的 stream模式, 主要代码如下 iter_content:一块一块的遍历要下载的内 ...

  8. JMeter学习1

    Jmeter的组织方式相对比较扁平,直接是TestPlan(相当于Project),TestPlan下创建的ThreadsGroup(相当于TestCase), Jmeter一个TestPlan也是一 ...

  9. c语言中一种典型的排列组合算法

    c语言中的全排列算法和组合数算法在实际问题中应用非常之广,但算法有许许多多,而我个人认为方法不必记太多,最好只记熟一种即可,一招鲜亦可吃遍天 全排列: #include<stdio.h> ...

  10. P5110 【块速递推】

    太菜了,不会生成函数,于是用特征方程来写的这道题 首先我们知道,形如\(a_n=A*a_{n-1}+B*a_{n-2}\)的特征方程为\(x^2=A*x+B\) 于是此题的递推式就是:\(x^2=23 ...