bzoj 2242: [SDOI2011]计算器【扩展欧几里得+快速幂+BSGS】
第一问快速幂板子
第二问把式子转化为\( xy\equiv Z(mod\ P)\rightarrow xy+bP=z \),然后扩展欧几里得
第三问BSGS板子
#include<iostream>
#include<cstdio>
#include<map>
#include<cmath>
using namespace std;
long long T,K,y,z,p;
map<long long,long long>mp;
long long gcd(long long a,long long b)
{
return !b?a:gcd(b,a%b);
}
long long ksm(long long a,long long b,long long p)
{
long long r=1ll;
a%=p;
while(b)
{
if(b&1)
r=r*a%p;
a=a*a%p;
b>>=1;
}
return r;
}
void exgcd(long long a,long long b,long long &x,long long &y)
{
if(!b)
{
x=1,y=0;
return;
}
exgcd(b,a%b,y,x);
y-=a/b*x;
}
int main()
{
scanf("%lld%lld",&T,&K);
while(T--)
{
scanf("%lld%lld%lld",&y,&z,&p);
if(K==1)
printf("%lld\n",ksm(y,z,p));
else if(K==2)
{
//p=-p;
long long t=gcd(y,p);
if(z%t)
{
puts("Orz, I cannot find x!");
continue;
}
y/=t,z/=t,p/=t;
long long xx,yy;
exgcd(y,p,xx,yy);
printf("%lld\n",(xx*z%p+p)%p);
}
else
{
y%=p;
if(!y&&!z)
{
puts("1");
continue;
}
if(!y)
{
puts("Orz, I cannot find x!");
continue;
}
mp.clear();
long long m=ceil(sqrt(p)),t=1;
mp[1]=m+1;
for(long long i=1;i<m;i++)
{
t=t*y%p;
if(!mp[t])
mp[t]=i;
}
long long tmp=ksm(y,p-m-1,p),now=1,f=0;
for(long long k=0;k<m;k++)
{
long long i=mp[z*now%p];
if(i)
{
if(i==m+1)
i=0;
printf("%lld\n",k*m+i);
f=1;
break;
}
now=now*tmp%p;
}
if(!f)
puts("Orz, I cannot find x!");
}
}
return 0;
}
bzoj 2242: [SDOI2011]计算器【扩展欧几里得+快速幂+BSGS】的更多相关文章
- BZOJ.2242.[SDOI2011]计算器(扩展欧几里得 BSGS)
同余方程都不会写了..还一直爆int /* 2.关于同余方程ax ≡b(mod p),可以用Exgcd做,但注意到p为质数,y一定有逆元 首先a%p=0时 仅当b=0时有解:然后有x ≡b*a^-1( ...
- URAL 1141. RSA Attack(欧拉定理+扩展欧几里得+快速幂模)
题目链接 题意 : 给你n,e,c,并且知道me ≡ c (mod n),而且n = p*q,pq都为素数. 思路 : 这道题的确与题目名字很相符,是个RSA算法,目前地球上最重要的加密算法.RSA算 ...
- bzoj 2242: [SDOI2011]计算器 BSGS+快速幂+扩展欧几里德
2242: [SDOI2011]计算器 Time Limit: 10 Sec Memory Limit: 512 MB[Submit][Status][Discuss] Description 你被 ...
- BZOJ 2242: [SDOI2011]计算器( 快速幂 + 扩展欧几里德 + BSGS )
没什么好说的... --------------------------------------------------------------------- #include<cstdio&g ...
- BZOJ 2242: [SDOI2011]计算器 [快速幂 BSGS]
2242: [SDOI2011]计算器 题意:求\(a^b \mod p,\ ax \equiv b \mod p,\ a^x \equiv b \mod p\),p是质数 这种裸题我竟然WA了好多次 ...
- BZOJ 1965 洗牌(扩展欧几里得)
容易发现,对于牌堆里第x张牌,在一次洗牌后会变成2*x%(n+1)的位置. 于是问题就变成了求x*2^m%(n+1)=L,x在[1,n]范围内的解. 显然可以用扩展欧几里得求出. # include ...
- bzoj 2242 [SDOI2011]计算器 快速幂+扩展欧几里得+BSGS
1:快速幂 2:exgcd 3:exbsgs,题里说是素数,但我打的普通bsgs就wa,exbsgs就A了...... (map就是慢)..... #include<cstdio> # ...
- bzoj 2242 [SDOI2011]计算器(数论知识)
Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给 ...
- [原博客] BZOJ 2242 [SDOI2011] 计算器
题目链接 noip级数论模版题了吧.让求三个东西: 给定y,z,p,计算`Y^Z Mod P` 的值. 给定y,z,p,计算满足`xy≡ Z ( mod P )`的最小非负整数. 给定y,z,p,计算 ...
随机推荐
- HDU 1558
输入线段的两个短点,如果线段相交那么他们属于一个集合,查看第i条线段所在的集合有几条线段. 好久没码码了,总是各种蠢. 首先找出两条直线的方程,求解相交点的横坐标,然后看是不是在线段内部. 没有注意题 ...
- system表空间用满解决
分类: Oracle 早上看到alert日志报说system表空间快满了(oracle版本是11gR2): 如果system表空间不是自动扩展,空间用满甚至会出现数据库无法登陆.使用任何用户登 ...
- grep使用正则表达式搜索IP地址
递归搜索当前目录及其子目录.子目录的子目录……所包含文件是否包含IP地址 grep -r "[[:digit:]]\{1,3\}\.[[:digit:]]\{1,3\}\.[[:digit: ...
- [BLE--Physical Layer]
简述 BLE的物理层,可能做IC或板极硬件RF測试的会比較关注. 是偏硬件层面的. 频率带宽和信道分配 BLE工作于2.4 GHz ISM频段2400-2483.5 MHz,ISM频段是公用的,不须要 ...
- 【algorithm】尾递归
尾递归和一般的递归不同在对内存的占用,普通递归创建stack累积而后计算收缩,尾递归只会占用恒量的内存(和迭代一样).SICP中描述了一个内存占用曲线,用以上答案中的Python代码为例(普通递归): ...
- Android从无知到有知——NO.6
紧随上一篇,说一下创建ip拨号器过程中出现的一些问题. 1)在一開始监听外拨电话的时候会报这样一个警告: Permission Denial: receiving Intent { act=andro ...
- 汉诺塔 Tower of Hanoi
假设柱子标为A,B.C.要由A搬至C,在仅仅有一个盘子时,就将它直接搬至C:当有两个盘子,就将B作为辅助柱.假设盘数超过2个.将第二个下面的盘子遮起来,就非常easy了.每次处理两个盘子,也就是:A- ...
- 亲測Mysql表结构为InnoDB类型从ibd文件恢复数据
客户的机器系统异常关机,重新启动后mysql数据库不能正常启动,重装系统后发现数据库文件损坏,悲催的是客户数据库没有进行及时备份,仅仅能想办法从数据库文件其中恢复,查找资料,试验各种方法,确认以下步骤 ...
- 书评第003篇:《0day安全:软件漏洞分析技术(第2版)》
本书基本信息 丛书名:安全技术大系 作者:王清(主编),张东辉.周浩.王继刚.赵双(编著) 出版社:电子工业出版社 出版时间:2011-6-1 ISBN:9787121133961 版次:1 页数:7 ...
- Leetcode Single Number II (面试题推荐)
还记得<剑指offer>和<编程之美>等书上多次出现的找一个数组中仅仅出现一次的数那个题吗? leetcode也有这道题 链接here 相信大家都知道用异或在O(n)的时间复 ...