第一问快速幂板子

第二问把式子转化为\( xy\equiv Z(mod\ P)\rightarrow xy+bP=z \),然后扩展欧几里得

第三问BSGS板子

#include<iostream>
#include<cstdio>
#include<map>
#include<cmath>
using namespace std;
long long T,K,y,z,p;
map<long long,long long>mp;
long long gcd(long long a,long long b)
{
return !b?a:gcd(b,a%b);
}
long long ksm(long long a,long long b,long long p)
{
long long r=1ll;
a%=p;
while(b)
{
if(b&1)
r=r*a%p;
a=a*a%p;
b>>=1;
}
return r;
}
void exgcd(long long a,long long b,long long &x,long long &y)
{
if(!b)
{
x=1,y=0;
return;
}
exgcd(b,a%b,y,x);
y-=a/b*x;
}
int main()
{
scanf("%lld%lld",&T,&K);
while(T--)
{
scanf("%lld%lld%lld",&y,&z,&p);
if(K==1)
printf("%lld\n",ksm(y,z,p));
else if(K==2)
{
//p=-p;
long long t=gcd(y,p);
if(z%t)
{
puts("Orz, I cannot find x!");
continue;
}
y/=t,z/=t,p/=t;
long long xx,yy;
exgcd(y,p,xx,yy);
printf("%lld\n",(xx*z%p+p)%p);
}
else
{
y%=p;
if(!y&&!z)
{
puts("1");
continue;
}
if(!y)
{
puts("Orz, I cannot find x!");
continue;
}
mp.clear();
long long m=ceil(sqrt(p)),t=1;
mp[1]=m+1;
for(long long i=1;i<m;i++)
{
t=t*y%p;
if(!mp[t])
mp[t]=i;
}
long long tmp=ksm(y,p-m-1,p),now=1,f=0;
for(long long k=0;k<m;k++)
{
long long i=mp[z*now%p];
if(i)
{
if(i==m+1)
i=0;
printf("%lld\n",k*m+i);
f=1;
break;
}
now=now*tmp%p;
}
if(!f)
puts("Orz, I cannot find x!");
}
}
return 0;
}

bzoj 2242: [SDOI2011]计算器【扩展欧几里得+快速幂+BSGS】的更多相关文章

  1. BZOJ.2242.[SDOI2011]计算器(扩展欧几里得 BSGS)

    同余方程都不会写了..还一直爆int /* 2.关于同余方程ax ≡b(mod p),可以用Exgcd做,但注意到p为质数,y一定有逆元 首先a%p=0时 仅当b=0时有解:然后有x ≡b*a^-1( ...

  2. URAL 1141. RSA Attack(欧拉定理+扩展欧几里得+快速幂模)

    题目链接 题意 : 给你n,e,c,并且知道me ≡ c (mod n),而且n = p*q,pq都为素数. 思路 : 这道题的确与题目名字很相符,是个RSA算法,目前地球上最重要的加密算法.RSA算 ...

  3. bzoj 2242: [SDOI2011]计算器 BSGS+快速幂+扩展欧几里德

    2242: [SDOI2011]计算器 Time Limit: 10 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description 你被 ...

  4. BZOJ 2242: [SDOI2011]计算器( 快速幂 + 扩展欧几里德 + BSGS )

    没什么好说的... --------------------------------------------------------------------- #include<cstdio&g ...

  5. BZOJ 2242: [SDOI2011]计算器 [快速幂 BSGS]

    2242: [SDOI2011]计算器 题意:求\(a^b \mod p,\ ax \equiv b \mod p,\ a^x \equiv b \mod p\),p是质数 这种裸题我竟然WA了好多次 ...

  6. BZOJ 1965 洗牌(扩展欧几里得)

    容易发现,对于牌堆里第x张牌,在一次洗牌后会变成2*x%(n+1)的位置. 于是问题就变成了求x*2^m%(n+1)=L,x在[1,n]范围内的解. 显然可以用扩展欧几里得求出. # include ...

  7. bzoj 2242 [SDOI2011]计算器 快速幂+扩展欧几里得+BSGS

    1:快速幂  2:exgcd  3:exbsgs,题里说是素数,但我打的普通bsgs就wa,exbsgs就A了...... (map就是慢)..... #include<cstdio> # ...

  8. bzoj 2242 [SDOI2011]计算器(数论知识)

    Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给 ...

  9. [原博客] BZOJ 2242 [SDOI2011] 计算器

    题目链接 noip级数论模版题了吧.让求三个东西: 给定y,z,p,计算`Y^Z Mod P` 的值. 给定y,z,p,计算满足`xy≡ Z ( mod P )`的最小非负整数. 给定y,z,p,计算 ...

随机推荐

  1. 一致性哈希算法-----> 解决memecache 服务器扩容后的数据丢失。

    1 基本场景 比如你有 N 个 cache 服务器(后面简称 cache ),那么如何将一个对象 object 映射到 N 个 cache 上呢,你很可能会采用类似下面的通用方法计算 object 的 ...

  2. 动态规划:Ignatius and the Princess IV

    #include<stdio.h> #include<string.h> #include<math.h> int main() { _int64 n,a; whi ...

  3. 2017-10-04-morning

    改题面只有1改为0 .. #include <cstring> #include <cstdio> inline void read(int &x) { x=; reg ...

  4. Win7 SP1 安装SQL Server 2012时提示“此计算机上的操作系统不符合 SQL Server 2012的最低要求”

  5. Oracle 行转列小结

    近期在工作中.对行转列进行了应用,在此做一个简单的小结. 转换步骤例如以下:     1.创建表结构 CREATE TABLE RowToCol ( ID NUMBER(10) not null, U ...

  6. topcoder srm 551

    div1 250pt 题意:一个长度最多50的字符串,每次操作可以交换相邻的两个字符,问,经过最多MaxSwaps次交换之后,最多能让多少个相同的字符连起来 解法:对于每种字符,枚举一个“集结点”,让 ...

  7. kill mediaserver脚本

    #!/bin/bash adb shell kill $(adb shell ps | grep mediaserver | awk '{print $2}') adb shell pm clear ...

  8. 添加 XML内Rows数据

    public static void addItemToXml(string method,string firstKey,string id,string checkName,string refV ...

  9. 升级iOS 9之前的注意事项

    iOS 9 beta刚刚公布.就下载了官网的升级包, 使用itunes的更新功能,升级 眼看安装过程一番顺利, 升级完開始进入设置操作步骤上, 结果傻眼了 进入了输入手机password的界面,  不 ...

  10. gnu-ucos 增加 bmp 位图显示

    昨天又下了点功夫弄了个在tft屏幕上显示bmp位图的. 我选择的是24位tft真彩測显示方式所以也要选择真彩色位图.网上给出的16位位图数组无法使用.在csdn上下载了2个制作工具,一个是c代码的,一 ...