很容易发现行数就是lcm环长,也就是要求和为n的若干数lcm的个数

有结论若p1a1+p2a2+...+pmam<=n,则ans=p1a1*p2a2*..*pmam是n的一个可行答案。(https://blog.csdn.net/wyfcyx_forever/article/details/40211739有证明

所以我们设f[i][j]为计算了前i个质数,p1a1+p2a2+...+pi^ai=j的lcm数量,转移的话直接枚举当前新增的p极它的指数加一下即可

#include<iostream>
#include<cstdio>
using namespace std;
const int N=1005;
int n,p[N],tot;
long long f[N][N];
bool v[N];
int main()
{
scanf("%d",&n);
v[1]=1;
for(int i=2;i<=1000;i++)
{
if(!v[i])
p[++tot]=i;
for(int j=1;j<=tot&&i*p[j]<=1000;j++)
{
v[i*p[j]]=1;
if(i%p[j]==0)
break;
}
}
for(int i=0;i<=tot;i++)
f[i][0]=1;
for(int j=0;j<=n;j++)
f[0][j]=1;
for(int i=1;i<=tot;i++)
for(int j=1;j<=n;j++)
{
f[i][j]=f[i-1][j];
for(int k=p[i];k<=j;k*=p[i])
f[i][j]+=f[i-1][j-k];
}
printf("%lld\n",f[tot][n]);
return 0;
}

bzoj 1025: [SCOI2009]游戏【数学+dp】的更多相关文章

  1. BZOJ 1025: [SCOI2009]游戏( 背包dp )

    显然题目要求长度为n的置换中各个循环长度的lcm有多少种情况. 判断一个数m是否是满足题意的lcm. m = ∏ piai, 当∑piai ≤ n时是满足题意的. 最简单我们令循环长度分别为piai, ...

  2. [BZOJ 1025] [SCOI2009] 游戏 【DP】

    题目链接:BZOJ - 1025 题目分析 显然的是,题目所要求的是所有置换的每个循环节长度最小公倍数的可能的种类数. 一个置换,可以看成是一个有向图,每个点的出度和入度都是1,这样整个图就是由若干个 ...

  3. BZOJ 1025: [SCOI2009]游戏 [置换群 DP]

    传送门 题意:求$n$个数组成的排列变为升序有多少种不同的步数 步数就是循环长度的$lcm$..... 那么就是求$n$划分成一些数几种不同的$lcm$咯 然后我太弱了这种$DP$都想不出来.... ...

  4. [bzoj 1025][SCOI2009]游戏(DP)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1025 分析:首先这个问题等价于A1+A2+……Ak=n,求lcm(A1,A2,……,Ak)的种 ...

  5. BZOJ 1025 [SCOI2009]游戏

    1025: [SCOI2009]游戏 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1533  Solved: 964[Submit][Status][ ...

  6. bzoj 1025 [SCOI2009]游戏(置换群,DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1025 [题意] 给定n,问1..n在不同的置换下变回原序列需要的不同排数有多少种. [ ...

  7. BZOJ 1025 [SCOI2009]游戏 (DP+分解质因子)

    题意: 若$a_1+a_2+\cdots+a_h=n$(任意h<=n),求$lcm(a_i)$的种类数 思路: 设$lcm(a_i)=x$, 由唯一分解定理,$x=p_1^{m_1}+p_2^{ ...

  8. BZOJ 1025 SCOI2009 游戏 动态规划

    标题效果:特定n.行定义一个替代品1~n这种更换周期发生后,T次要(T>0)返回到原来的顺序 找到行的所有可能的数 循环置换分解成若干个,然后行位移数是这些周期的长度的最小公倍数 因此,对于一些 ...

  9. 【BZOJ】1025: [SCOI2009]游戏(置换群+dp+特殊的技巧+lcm)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1025 首先根据置换群可得 $$排数=lcm\{A_i, A_i表示循环节长度\}, \sum_{i= ...

随机推荐

  1. Linux kernel 内核学习路线

    看了下各位大神的推荐路线,总结如下: 0. 跟着项目走: 1. 学会用.熟练用linux系统: 2. Linux Kernel Development. 3. Understanding the Li ...

  2. 大数c++模板 超级好用

    只用输入用cin 输出  cout  每个数学符号都可以用   超级强大 #include <iostream> #include <queue> #include <c ...

  3. HDU 2050 【dp】【简单数学】

    题意: 中文. 思路: 不难发现数学规律是这样的,每次增加的划分区域的数量是每次增加的交点的数量再加一.然后就总结出了递推公式. #include<stdio.h> ]; int main ...

  4. 干掉H5audio音频标签的下载按钮

    audio::-internal-media-controls-download-button {display:none;}audio::-webkit-media-controls {overfl ...

  5. VB6 如何添加自定义函数 模块 把代码放到一个模块中

    1 工程-添加模块,在右侧工程视图中可以发现多了一个Module1   2 比如我在这个模块中自定义两个函数,分别为写入和读取INI的函数   3 则在主程序中已经可以直接调用  

  6. 多校训练hdu --Nice boat(线段树,都是泪)

    Nice boat Time Limit: 30000/15000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) Total ...

  7. 全栈JavaScript之路(十六)HTML5 HTMLDocument 类型的变化

    HTML5 扩展了 HTMLDocument, 添加了新的功能. 1.document.readState = 'loading' || 'complete'  //支持readyState 属性的浏 ...

  8. grep命令使用技巧

    grep如何实现全词查找例如:要查找name这个单词,反馈的查找结果不能包含namespace这样的模式,但是可以包含name()这样的模式,即要查找的单词两端不可以有其他的数字或者字母,但可以有空格 ...

  9. Ctags基本配置

    一般linux系统都会自带ctags,也可输入"ctags"看有木有该命令.有的话速度配置吧,没有话yum install ctags安装吧. 打开vim 配置文件,要是没该文件就 ...

  10. [IT学习]Python pandas 学习

    今天学习pandas来处理数据,结果用python 3.5.0的shell来调试,总是报错. 报错中包含如下字样: Traceback (most recent call last): File &q ...