很容易发现行数就是lcm环长,也就是要求和为n的若干数lcm的个数

有结论若p1a1+p2a2+...+pmam<=n,则ans=p1a1*p2a2*..*pmam是n的一个可行答案。(https://blog.csdn.net/wyfcyx_forever/article/details/40211739有证明

所以我们设f[i][j]为计算了前i个质数,p1a1+p2a2+...+pi^ai=j的lcm数量,转移的话直接枚举当前新增的p极它的指数加一下即可

#include<iostream>
#include<cstdio>
using namespace std;
const int N=1005;
int n,p[N],tot;
long long f[N][N];
bool v[N];
int main()
{
scanf("%d",&n);
v[1]=1;
for(int i=2;i<=1000;i++)
{
if(!v[i])
p[++tot]=i;
for(int j=1;j<=tot&&i*p[j]<=1000;j++)
{
v[i*p[j]]=1;
if(i%p[j]==0)
break;
}
}
for(int i=0;i<=tot;i++)
f[i][0]=1;
for(int j=0;j<=n;j++)
f[0][j]=1;
for(int i=1;i<=tot;i++)
for(int j=1;j<=n;j++)
{
f[i][j]=f[i-1][j];
for(int k=p[i];k<=j;k*=p[i])
f[i][j]+=f[i-1][j-k];
}
printf("%lld\n",f[tot][n]);
return 0;
}

bzoj 1025: [SCOI2009]游戏【数学+dp】的更多相关文章

  1. BZOJ 1025: [SCOI2009]游戏( 背包dp )

    显然题目要求长度为n的置换中各个循环长度的lcm有多少种情况. 判断一个数m是否是满足题意的lcm. m = ∏ piai, 当∑piai ≤ n时是满足题意的. 最简单我们令循环长度分别为piai, ...

  2. [BZOJ 1025] [SCOI2009] 游戏 【DP】

    题目链接:BZOJ - 1025 题目分析 显然的是,题目所要求的是所有置换的每个循环节长度最小公倍数的可能的种类数. 一个置换,可以看成是一个有向图,每个点的出度和入度都是1,这样整个图就是由若干个 ...

  3. BZOJ 1025: [SCOI2009]游戏 [置换群 DP]

    传送门 题意:求$n$个数组成的排列变为升序有多少种不同的步数 步数就是循环长度的$lcm$..... 那么就是求$n$划分成一些数几种不同的$lcm$咯 然后我太弱了这种$DP$都想不出来.... ...

  4. [bzoj 1025][SCOI2009]游戏(DP)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1025 分析:首先这个问题等价于A1+A2+……Ak=n,求lcm(A1,A2,……,Ak)的种 ...

  5. BZOJ 1025 [SCOI2009]游戏

    1025: [SCOI2009]游戏 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1533  Solved: 964[Submit][Status][ ...

  6. bzoj 1025 [SCOI2009]游戏(置换群,DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1025 [题意] 给定n,问1..n在不同的置换下变回原序列需要的不同排数有多少种. [ ...

  7. BZOJ 1025 [SCOI2009]游戏 (DP+分解质因子)

    题意: 若$a_1+a_2+\cdots+a_h=n$(任意h<=n),求$lcm(a_i)$的种类数 思路: 设$lcm(a_i)=x$, 由唯一分解定理,$x=p_1^{m_1}+p_2^{ ...

  8. BZOJ 1025 SCOI2009 游戏 动态规划

    标题效果:特定n.行定义一个替代品1~n这种更换周期发生后,T次要(T>0)返回到原来的顺序 找到行的所有可能的数 循环置换分解成若干个,然后行位移数是这些周期的长度的最小公倍数 因此,对于一些 ...

  9. 【BZOJ】1025: [SCOI2009]游戏(置换群+dp+特殊的技巧+lcm)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1025 首先根据置换群可得 $$排数=lcm\{A_i, A_i表示循环节长度\}, \sum_{i= ...

随机推荐

  1. transient 关键字

    java语言的关键字,变量修饰符,如果用transient声明一个实例变量,当对象存储时,它的值不需要维持.换句话来说就是,用transient关键字标记的成员变量不参与序列化过程.   作用 Jav ...

  2. app后端搜索入门

    现在人们的网络生活已经离不开搜索了,遇到不懂的问题,想知道的事情,搜索一下,就知道答案. 在app中,最常见的搜索情景就是搜索用户.只有几百,几千的用户量时,可以直接用用like这样的模糊查询,但是, ...

  3. 原生js操作dom的方法

    今天学习了原生js的dom节点的操作,就记录下来,仅供自己以后参考. 1)创建节点:除了可以使用createElement创建元素,也可以使用createTextNode创建文本节点. documen ...

  4. [Bzoj3631][JLOI2014]松鼠的新家 (树上前缀和)

    3631: [JLOI2014]松鼠的新家 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2350  Solved: 1212[Submit][Sta ...

  5. Spring Boot使用HandlerInterceptorAdapter和WebMvcConfigurerAdapter实现原始的登录验证

    HandlerInterceptorAdapter的介绍:http://www.cnblogs.com/EasonJim/p/7704740.html,相当于一个Filter拦截器,但是这个颗粒度更细 ...

  6. java quartz的使用,做时间轮询调用 CronTrigger

    import org.quartz.Job; import org.quartz.JobExecutionContext; import org.quartz.JobExecutionExceptio ...

  7. Office EXCEL 的绝对引用和相对引用如何理解

    比如C1 = A1+B1,则我把C1的单元格往下拖拉的时候,C2会自动等于A2+B2,C3会自动等于A3+B3,而如果让G1 = $E$1+$F$1,则把G1单元格往下拖拉的时候,G2G3单元格都不会 ...

  8. 给工作赋予的新意义——Leo鉴书78

    现代社会学三大奠基人有两位名字里有"马克思",他们都是德国人.当中一位就是写<资本论>的卡尔•马克思,另一位就是<新教伦理与资本主义精神>的作者马克思•韦伯 ...

  9. 百万级PHP网站Poppen.de的架构分享心得

    在了解过世界最大的PHP站点,Facebook的后台技术后, 今天我们来了解一个百万级PHP站点的网站架构:Poppen.de.Poppen.de是德国的一个社交网站,相对Facebook.Flick ...

  10. MYSQL 增加字段不报错,插入数据不报错处理

    ') ON DUPLICATE KEY UPDATE sort_name = "vipset"; 重点在 ON DUPLICATE KEY UPDATE sort_name = & ...