bzoj 1025: [SCOI2009]游戏【数学+dp】
很容易发现行数就是lcm环长,也就是要求和为n的若干数lcm的个数
有结论若p1a1+p2a2+...+pmam<=n,则ans=p1a1*p2a2*..*pmam是n的一个可行答案。(https://blog.csdn.net/wyfcyx_forever/article/details/40211739有证明
所以我们设f[i][j]为计算了前i个质数,p1a1+p2a2+...+pi^ai=j的lcm数量,转移的话直接枚举当前新增的p极它的指数加一下即可
#include<iostream>
#include<cstdio>
using namespace std;
const int N=1005;
int n,p[N],tot;
long long f[N][N];
bool v[N];
int main()
{
scanf("%d",&n);
v[1]=1;
for(int i=2;i<=1000;i++)
{
if(!v[i])
p[++tot]=i;
for(int j=1;j<=tot&&i*p[j]<=1000;j++)
{
v[i*p[j]]=1;
if(i%p[j]==0)
break;
}
}
for(int i=0;i<=tot;i++)
f[i][0]=1;
for(int j=0;j<=n;j++)
f[0][j]=1;
for(int i=1;i<=tot;i++)
for(int j=1;j<=n;j++)
{
f[i][j]=f[i-1][j];
for(int k=p[i];k<=j;k*=p[i])
f[i][j]+=f[i-1][j-k];
}
printf("%lld\n",f[tot][n]);
return 0;
}
bzoj 1025: [SCOI2009]游戏【数学+dp】的更多相关文章
- BZOJ 1025: [SCOI2009]游戏( 背包dp )
显然题目要求长度为n的置换中各个循环长度的lcm有多少种情况. 判断一个数m是否是满足题意的lcm. m = ∏ piai, 当∑piai ≤ n时是满足题意的. 最简单我们令循环长度分别为piai, ...
- [BZOJ 1025] [SCOI2009] 游戏 【DP】
题目链接:BZOJ - 1025 题目分析 显然的是,题目所要求的是所有置换的每个循环节长度最小公倍数的可能的种类数. 一个置换,可以看成是一个有向图,每个点的出度和入度都是1,这样整个图就是由若干个 ...
- BZOJ 1025: [SCOI2009]游戏 [置换群 DP]
传送门 题意:求$n$个数组成的排列变为升序有多少种不同的步数 步数就是循环长度的$lcm$..... 那么就是求$n$划分成一些数几种不同的$lcm$咯 然后我太弱了这种$DP$都想不出来.... ...
- [bzoj 1025][SCOI2009]游戏(DP)
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1025 分析:首先这个问题等价于A1+A2+……Ak=n,求lcm(A1,A2,……,Ak)的种 ...
- BZOJ 1025 [SCOI2009]游戏
1025: [SCOI2009]游戏 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1533 Solved: 964[Submit][Status][ ...
- bzoj 1025 [SCOI2009]游戏(置换群,DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1025 [题意] 给定n,问1..n在不同的置换下变回原序列需要的不同排数有多少种. [ ...
- BZOJ 1025 [SCOI2009]游戏 (DP+分解质因子)
题意: 若$a_1+a_2+\cdots+a_h=n$(任意h<=n),求$lcm(a_i)$的种类数 思路: 设$lcm(a_i)=x$, 由唯一分解定理,$x=p_1^{m_1}+p_2^{ ...
- BZOJ 1025 SCOI2009 游戏 动态规划
标题效果:特定n.行定义一个替代品1~n这种更换周期发生后,T次要(T>0)返回到原来的顺序 找到行的所有可能的数 循环置换分解成若干个,然后行位移数是这些周期的长度的最小公倍数 因此,对于一些 ...
- 【BZOJ】1025: [SCOI2009]游戏(置换群+dp+特殊的技巧+lcm)
http://www.lydsy.com/JudgeOnline/problem.php?id=1025 首先根据置换群可得 $$排数=lcm\{A_i, A_i表示循环节长度\}, \sum_{i= ...
随机推荐
- .htaccess重写、安全防护、文件访问权限
今天在<外刊IT评论>上看见了关于.htaccess的使用总结,觉得很不错的,因为wp博客还有其他的php的web服务站点好多都是用.htaccess来管理比如效率以及安全的问题,有必要来 ...
- 【搜索引擎】Solr最新安装以及通过关系型数据库(MySQL,Oracle,PostgreSQL)导入数据
版本号 最新的solr版本 : Solr 8.1.1下载地址:https://lucene.apache.org/solr/downloads.html solr-8.1.0.tgz for Linu ...
- [Bzoj3611][Heoi2014]大工程(虚树)
3611: [Heoi2014]大工程 Time Limit: 60 Sec Memory Limit: 512 MBSubmit: 2000 Solved: 837[Submit][Status ...
- neo4j在linux下的安装
1. Neo4j简介 Neo4j是一个用Java实现的.高性能的.NoSQL图形数据库.Neo4j 使用图(graph)相关的概念来描述数据模型,通过图中的节点和节点的关系来建模.Neo4j完全兼容A ...
- babel 用法及其 .babelrc 的配置详解,想做前端架构,拒绝一知半解...
Babel 官方介绍:将 ECMAScript 2015 及其版本以后的 javascript 代码转为旧版本浏览器或者是环境中向后兼容版本的 javascript 代码. 简而言之,就是把不兼容的 ...
- 一句话从MySQL导出CSV文件
mysql -h <host> -u<user> -p<passport> crm -e "select ....." | csvcut -t ...
- vue自定义轮播图组件 swiper
1.banner 组件 components/Banner.vue <!-- 轮播图 组件 --> <template> <div class="swiper- ...
- MySQL基础笔记(五) 视图
一.什么是视图 视图是一个虚拟表.也就是说,视图在外观和行为上都类似于表,但它不需要实际的物理存储,只保存了视图定义(查询语句). 视图由select查询所定义 -- 当创建一个视图时,实际上是在数据 ...
- 责任链模式的具体应用 ServiceStack.Redis订阅发布服务的调用
责任链模式的具体应用 1.业务场景 生产车间中使用的条码扫描,往往一把扫描枪需要扫描不同的条码来处理不同的业务逻辑,比如,扫描投入料工位条码.扫描投入料条码.扫描产出工装条码等,每种类型的条码位数 ...
- JNI返回复杂对象之中的一个
需求: 首先说需求.近期接手一个项目.要在底层解析二进制数据,数据结构比較负责,因为server是c++server,加之開始没有考虑到移动端开发,所以协议有点扯蛋.大体是这种,一个数据包里面是map ...