Description


给出1~n的一个排列,统计该排列有多少个长度为奇数的连续子序列的中位数是b。中位数是指把所有元素从小到大排列后,位于中间的数。

Input


第一行为两个正整数n和b,第二行为1~n的排列。

【数据规模】

对于30%的数据中,满足n≤100;

对于60%的数据中,满足n≤1000;

对于100%的数据中,满足n≤100000,1≤b≤n。

Output


输出一个整数,即中位数为b的连续子序列个数。

Sample Input


7 4
5 7 2 4 3 1 6

Sample Output


4

题解


因为这道题不关心数据具体为多少,只关心每个数比b大或小,
所以首先在读入的时候就忽视数据绝对大小,只存相对b的大小
(小于b存-1 等于b存0 大于b存1

O(n^2):
枚举区间长度L和左端点i 利用前缀和可以O(1)得到区间和 易知区间和为0的话在这个区间内b为中位数
(证明:因为区间和为0 所以在这个区间内的-1数量和1的数量相等 也就是比b小的和比b大的数一样多)

期望60,却因为数据巨水搞到90(喵喵喵?)

本来打算卡一波常A掉然后发n方题解哈哈哈哈

90分代码:

#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
inline int read()
{
char ch=getchar();
int x=0;bool s=1;
while(ch<'0'||ch>'9'){if(ch=='-')s=0;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-48;ch=getchar();}
return s?x:-x;
}
int a[100007];
int s[100007];
int main()
{
//scan
int n,mid,p;
n=read(),mid=read();
unsigned long long ans=0;
for(int i=1;i<=n;++i)
{
int x=read();
if(x<mid)a[i]=-1;
else if(x>mid)a[i]=1;
else p=i;
}
for(int i=1;i<=n;++i)
s[i]=s[i-1]+a[i];
//run
for(int l=1;l<=n;l+=2)
{
int k=min(p,n-l+1);
for(int i=max(1,p-l+1);i<=k;++i)
{
int j=i+l-1;
if(s[j]-s[i-1]==0)ans++;
}
}
cout<<ans<<endl;
return 0;
}

AC做法:(先懵着脑袋看 后有讲解)

读入的同时记录b出现的坐标为p。从p-1到1扫一遍,从p+1到n扫一遍,用类计数排序的方式记录 ↓

int s=0;
for(int i=p-1;i;--i){
s+=a[i];
L[s+c]++;//c=100001 避免负坐标
}
s=0;
for(int i=p+1;i<=n;++i){
s+=a[i];
R[s+c]++;
}

L[ s + c ]表所有左端点为1到p-1,右端点为p-1的区间中,区间和为s的情况数
同理R[ s + c ]表所有左端点为p+1,右端点为p+1到n的区间中,区间和为s的情况数

而对于一个区间< l , r >,如果< l , p-1 >的区间和 + < p+1 , r >的区间和==0的话,就是一个符合条件的区间。
所以根据乘法原理,L[ s + c ] × R[ ( - s ) + c ] == p左边的区间和为s时的所有可能情况(此时右边区间和为-s)所以

ans+=L[ s + c ] × R[ ( - s ) + c ] ( s = - n to n ) ;

最后因为以上只计算了 l < p 且 r > p 的区间,所以还要

ans+=L[ 0 + c ]  (l<p r==p) +R[0+c] (l==p r>p) +1(l==p r==p);

AC代码:

#include<iostream>
#include<cstdio>
using namespace std;
#define R register
inline int read()
{
char ch=getchar();
int x=0;bool s=1;
while(ch<'0'||ch>'9'){if(ch=='-')s=0;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-48;ch=getchar();}
return s?x:-x;
}
int a[100007],l[200007],r[200007];
int main()
{
//scan
int n=read(),b=read(),p;
for(R int i=1;i<=n;++i)
{
int x=read();
if(x<b)a[i]=-1;
else if(x>b)a[i]=1;
else p=i;
}
//predo
int s=0,c=100001;
for(R int i=p-1;i;--i)
{
s+=a[i];
l[s+c]++;
}
s=0;
for(R int i=p+1;i<=n;++i)
{
s+=a[i];
r[s+c]++;
}
//run
int ans=0;
for(R int i=-n;i<=n;++i)
{
ans+=l[i+c]*r[-i+c];
}
ans+=l[0+c]+r[0+c]+1;
cout<<ans<<endl;
return 0;
}

「LuoguP1627 / T36198」 [CQOI2009]中位数的更多相关文章

  1. 「国家集训队」middle

    「国家集训队」middle 传送门 按照中位数题的套路,二分答案 \(mid\),序列中 \(\ge mid\) 记为 \(1\),\(< mid\) 的记为 \(-1\) 然后只要存在一个区间 ...

  2. 「POJ 3666」Making the Grade 题解(两种做法)

    0前言 感谢yxy童鞋的dp及暴力做法! 1 算法标签 优先队列.dp动态规划+滚动数组优化 2 题目难度 提高/提高+ CF rating:2300 3 题面 「POJ 3666」Making th ...

  3. 前端构建工具之gulp(一)「图片压缩」

    前端构建工具之gulp(一)「图片压缩」 已经很久没有写过博客了,现下终于事情少了,开始写博吧 今天网站要做一些优化:图片压缩,资源合并等 以前一直使用百度的FIS工具,但是FIS还没有提供图片压缩的 ...

  4. BZOJ 1303 CQOI2009 中位数图 水题

    1303: [CQOI2009]中位数图 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2340  Solved: 1464[Submit][Statu ...

  5. fir.im Weekly - 如何打造 Github 「爆款」开源项目

    最近 Android 转用 Swift 的传闻甚嚣尘上,Swift 的 Github 主页上已经有了一次 merge>>「Port to Android」,让我们对 Swift 的想象又多 ...

  6. 更新日志 - fir.im「高级统计」功能上线

    距离 2016 年到来只剩 10 个日夜,fir.im 也准备了一些新鲜的东西,比如「高级统计」功能和「跳转应用商店」功能,帮助你更好地管理.优化应用,欢迎大家试用反馈:) 新增高级统计功能 这次更新 ...

  7. Notepad++ 开启「切分窗口」同时检视、比对两份文件

    Notepad++ 是个相当好用的免费纯文本编辑器,除了内建的功能相当多之外,也支持外挂模块的方式扩充各方面的应用.以前我都用 UltraEdit 跟 Emeditor,后来都改用免费的 Notepa ...

  8. 「zigbee - 1」工欲善其事必先利其器 - IAR for 8051 IDE customization

    最近在实验室做一些 Zigbee 相关的事情,然而一直没在博客上记录啥东西,也不像原来在公司有动力在 Confluence wiki 上扯东扯西.直到前些阵子,跑到 feibit 论坛上(国内较大的一 ...

  9. 「C语言」文件的概念与简单数据流的读写函数

    写完「C语言」单链表/双向链表的建立/遍历/插入/删除 后,如何将内存中的链表信息及时的保存到文件中,又能够及时的从文件中读取出来进行处理,便需要用到”文件“的相关知识点进行文件的输入.输出. 其实, ...

随机推荐

  1. Codeforces 514C Watto and Mechanism(字典树)

    题目链接  Watto and Mechanism 题意  给出$n$个串(相当于字典),然后给出$m$个询问. 每个询问以字符串的形式给出,你需要改变这个字符串中的任意一个字符 (必须改变且只能改变 ...

  2. input标签附带提示文字(bootstrap里面输入框的两侧同时添加额外元素)

    一直不太喜欢用定位,今天写界面的时候,要在输入框右边添加默认的元素符号. 第一次尝试,因为本身项目用的是bootstrap所以就想利用输入框的两侧同时添加额外元素. 但是写了代码发现效果不同. 第二次 ...

  3. Springboot 工具类静态注入

    用springboot搭了一个项目,里面要用到一个DictUtils,因为要用到DictMapper,在百度找了一些方法,最后用下面的方法能成功获取到DictMapper @Component pub ...

  4. LazyTableImages范例解析

    近来想了解iPhone的多线程处理,查阅到了官方范例LazyTableImages,发现代码中有不仅有多线程处理,还有XML解析和异步下载图片,感觉官方例子真是全面啊,便花了时间好好研究下. Lazy ...

  5. pycharm索引index时间很长的原因

    pycharm进行索引index的目的时代码自动补全,当引入新的插件时,就会增加索引时间,插件越多,索引时间越长 没有好的解决办法,除非增加硬件:或者不使用代码自动补全功能

  6. 我理解的ios和android

    近期着手了几个android和ios的项目,如今说下我的几个对他们的理解 从设计上来讲.我觉得android 它更像是个网页,一个页面跳到另外一个页面,两者之间的关联不是非常大,仅仅能传递一些简单的參 ...

  7. Json——使用Json jar包实现Json字符串与Java对象或集合之间的互相转换

    总结一下利用Json相关jar包实现Java对象和集合与Json字符串之间的互相转换: 1.创建的User类: package com.ghj.packageofdomain; public clas ...

  8. FastDFS的配置、部署与API使用解读(1)Get Started with FastDFS(转)

    转载请注明来自:诗商·柳惊鸿CSDN博客,原文链接:FastDFS的配置.部署与API使用解读(1)入门使用教程 1.背景 FastDFS是一款开源的.分布式文件系统(Distributed File ...

  9. 光纤与PON基础概念整理

    近期有幸接触到通讯这一领域,此文专门用于整理记录. 首先是光纤与光缆  光纤(OpticalFiber,OF)是用来导光的透明介质纤维,一根有用化的光纤是由多层透明介质构成,一般能够分为三部分:折射率 ...

  10. cocos2d-x 3.0 touch事件官方解释

    官方解释 http://www.cocos2d-x.org/docs/manual/framework/native/input/event-dispatcher/zh#_1