UVA-10125(中途相遇法)
题意:
给定一个整数集合,找出最大的d,使得a+b+c=d,a,b,c,d是集合中不同的元素;
思路:
如果单纯的枚举a,b,c的复杂度是O(n^3)的,为了降低复杂度,可以先把a+b的情形都找出来,然后再枚举d和c,是否符合要求;
AC代码:
#include <bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath> using namespace std; #define For(i,j,n) for(int i=j;i<=n;i++)
#define mst(ss,b) memset(ss,b,sizeof(ss)); typedef long long LL; template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<''||CH>'';F= CH=='-',CH=getchar());
for(num=;CH>=''&&CH<='';num=num*+CH-'',CH=getchar());
F && (num=-num);
}
int stk[], tp;
template<class T> inline void print(T p) {
if(!p) { puts(""); return; }
while(p) stk[++ tp] = p%, p/=;
while(tp) putchar(stk[tp--] + '');
putchar('\n');
} const LL mod=1e9+;
const double PI=acos(-1.0);
const int inf=1e9;
const int N=3e6+;
const int maxn=1e3+;
const double eps=1e-; int a[maxn],n,ans; struct node
{
int a,b;
};
vector<node>ve[*maxn];
map<int,int>mp; int check(int x,int y)
{
int temp=mp[x-y];
int len=ve[temp].size();
For(k,,len-)
{
int fa=ve[temp][k].a,fb=ve[temp][k].b;
if(fa!=x&&fa!=y&&fb!=x&&fb!=y)
{
ans=max(ans,x);
return x;
}
}
return -inf;
}
int main()
{
while()
{
mp.clear();
For(i,,*maxn-)ve[i].clear();
read(n);
if(!n)break;
int cnt=;
For(i,,n)read(a[i]);
For(i,,n)
For(j,i+,n)
{
if(!mp[a[i]+a[j]])
{
cnt++;
mp[a[i]+a[j]]=cnt;
node d;
d.a=a[i],d.b=a[j];
ve[cnt].push_back(d);
}
else
{
int temp=mp[a[i]+a[j]];
node d;
d.a=a[i],d.b=a[j];
ve[temp].push_back(d);
}
}
ans=-inf;
For(i,,n)
{
For(j,i+,n)
{
if(mp[a[i]-a[j]])ans=max(ans,check(a[i],a[j]));
if(mp[a[j]-a[i]])ans=max(ans,check(a[j],a[i]));
}
}
if(ans==-inf)cout<<"no solution"<<endl;
else cout<<ans<<endl;
}
return ;
}
UVA-10125(中途相遇法)的更多相关文章
- UVa 1152 (中途相遇法) 4 Values whose Sum is 0
题意: 要从四个数组中各选一个数,使得这四个数之和为0,求合法的方案数. 分析: 首先枚举A+B所有可能的值,排序. 然后枚举所有-C-D的值在其中用二分法查找. #include <cstdi ...
- uva 6757 Cup of Cowards(中途相遇法,貌似)
uva 6757 Cup of CowardsCup of Cowards (CoC) is a role playing game that has 5 different characters (M ...
- 紫书 例题8-3 UVa 1152(中途相遇法)
这道题要逆向思维, 就是求出答案的一部分, 然后反过去去寻找答案存不存在. 其实很多其他题都用了这道题目的方法, 自己以前都没有发现, 这道题专门考这个方法.这个方法可以没有一直往下求, 可以省去很多 ...
- 紫书 习题 8-16 UVa 1618 (中途相遇法)
暴力n的四次方, 然而可以用中途相遇法的思想, 分左边两个数和右边两个数来判断, 最后合起来判断. 一边是n平方logn, 合起来是n平方logn(枚举n平方, 二分logn) (1)两种比较方式是相 ...
- 【uva 1152】4 Values Whose Sum is Zero(算法效率--中途相遇法+Hash或STL库)
题意:给定4个N元素几个A,B,C,D,要求分别从中选取一个元素a,b,c,d使得a+b+c+d=0.问有多少种选法.(N≤4000,D≤2^28) 解法:首先我们从最直接最暴力的方法开始思考:四重循 ...
- LA 2965 Jurassic Remains (中途相遇法)
Jurassic Remains Paleontologists in Siberia have recently found a number of fragments of Jurassic pe ...
- HDU 5936 Difference 【中途相遇法】(2016年中国大学生程序设计竞赛(杭州))
Difference Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total ...
- 【中途相遇法】【STL】BAPC2014 K Key to Knowledge (Codeforces GYM 100526)
题目链接: http://codeforces.com/gym/100526 http://acm.hunnu.edu.cn/online/?action=problem&type=show& ...
- 高效算法——J 中途相遇法,求和
---恢复内容开始--- J - 中途相遇法 Time Limit:9000MS Memory Limit:0KB 64bit IO Format:%lld & %llu Su ...
- 【UVALive】2965 Jurassic Remains(中途相遇法)
题目 传送门:QWQ 分析 太喵了~~~~~ 还有中途相遇法这种东西的. 嗯 以后可以优化一些暴力 详情左转蓝书P58 (但可能我OI生涯中都遇不到正解是这个的题把...... 代码 #include ...
随机推荐
- BZOJ 4810 [Ynoi2017]由乃的玉米田 (莫队 + bitset)
题目链接 BZOJ 4810 首先对询问离线, 莫队算法处理. 首先我们可以用bitset维护处当前区间中是否存在某个数. 对于询问1, 我们可以用 ((f >> q[i].x) &am ...
- HDU 4341 Gold miner(分组背包)
题目链接 Gold miner 目标是要在规定时间内获得的价值总和要尽可能大. 我们先用并查集把斜率相同的物品分在同一个组. 这些组里的物品按照y坐标的大小升序排序. 如果组内的一个物品被选取了,那该 ...
- codevs 2964公共素数因数
2964 公共素数因数 时间限制: 1 s 空间限制: 32000 KB 题目等级 : 白银 Silver 题解 题目描述 Description 小单同学刚学习了一个数分解成几个素 ...
- Chrome 浏览器安装Vue插件方法 (十分详细)
博主最近在研究Vue,无奈新手想安装Chrome的Vue插件,整理下安装流程: 1.首先去github下载vue.zip文件插件(还有npm安装方法这里就不介绍了自行百度)下载地址:https://g ...
- gorm 结构体 预加载
结构体构建 type PlansApproval struct { ID uint Plans_Id int //plans编号 UpdateUser int //更新者 ...
- 【JavaScript】数据类型
学习不论什么一种程序设计语言.数据类型都是不可缺少的一部分内容,非常基础,也非常重要.该用何种数据类型定义变量.这也是编程中最基础的一项. ECMAScript中有5种简单数据类型:Undefined ...
- SolidEdge 工程图中如何控制是否显示爆炸图组装线
右击视图,点击性质,取消勾选"显示流线" 即可取消爆炸视图的装配线
- Linux C++的多线程编程(转)
1. 引言 线程(thread)技术早在60年代就被提出,但真正应用多线程到操作系统中去,是在80年代中期,solaris是这方面的佼佼者.传统的Unix也支持线程的概念,但是在一个进程(proces ...
- java开始到熟悉60
本次主题:多维数组 1,多维数组的初始话有三种:默认初始化.静态初始化.动态初始化. 这里只讲解静态初始化: 这里以二位数组为例,实际应用中,一维用得最多,二维次之,三维以及三维以上几乎很少使用,而且 ...
- java栈、堆
一.栈.堆 几个小概念 1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制. 2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的 ...