绘制热图除了使用ggplot2,还可以有其它的包或函数,比如pheatmap::pheatmap (pheatmap包中的pheatmap函数)、gplots::heatmap.2等。
 
相比于ggplot2作heatmap, pheatmap会更为简单一些,一个函数设置不同的参数,可以完成行列聚类、行列注释、Z-score计算、颜色自定义等。
data_ori <- "Grp_1;Grp_2;Grp_3;Grp_4;Grp_5
a;6.6;20.9;100.1;600.0;5.2
b;20.8;99.8;700.0;3.7;19.2
c;100.0;800.0;6.2;21.4;98.6
d;900;3.3;20.3;101.1;10000" data <- read.table(text=data_ori, header=T, row.names=1, sep=";", quote="")
Grp_1 Grp_2 Grp_3 Grp_4 Grp_5
a 6.6 20.9 100.1 600.0 5.2
b 20.8 99.8 700.0 3.7 19.2
c 100.0 800.0 6.2 21.4 98.6
d 900.0 3.3 20.3 101.1 10000.0
pheatmap::pheatmap(data, filename="pheatmap_1.pdf")
虽然有点丑,但一步就出来了。
 
此外Z-score计算在pheatmap中只要一个参数就可以实现。
pheatmap::pheatmap(data, scale="row", filename="pheatmap_1.pdf")

有时可能不需要行或列的聚类,原始展示就可以了。
pheatmap::pheatmap(data, scale="row", cluster_rows=FALSE, cluster_cols=FALSE, filename="pheatmap_1.pdf")
给矩阵 (data)中行和列不同的分组注释。假如有两个文件,第一个文件为行注释,其第一列与矩阵中的第一列内容相同 (顺序没有关系),其它列为第一列的不同的标记,如下面示例中(假设行为基因,列为样品)的2,3列对应基因的不同类型 (TF or enzyme)和不同分组。第二个文件为列注释,其第一列与矩阵中第一行内容相同,其它列则为样品的注释。
row_anno = data.frame(type=c("TF","Enzyme","Enzyme","TF"), class="c"("clu1","clu1","clu2","clu2"), row.names=rownames(data))
row_anno
type class
a TF clu1
b Enzyme clu1
c Enzyme clu2
d TF clu2
col_anno = data.frame(grp=c("A","A","A","B","B"), size=1:5, row.names=colnames(data))
col_anno
grp size
Grp_1 A 1
Grp_2 A 2
Grp_3 A 3
Grp_4 B 4
Grp_5 B 5
pheatmap::pheatmap(data, scale="row",
cluster_rows=FALSE,
annotation_col=col_anno,
annotation_row=row_anno,
filename="pheatmap_1.pdf")
自定义下颜色吧。
# <bias> values larger than 1 will give more color for high end.
# Values between 0-1 will give more color for low end.
pheatmap::pheatmap(data, scale="row",
cluster_rows=FALSE,
annotation_col=col_anno,
annotation_row=row_anno,
color=colorRampPalette(c('green','yellow','red'), bias=1)(50),
filename="pheatmap_1.pdf")
不改脚本的热图绘制
绘图时通常会碰到两个头疼的问题:
  1. 需要画很多的图,唯一的不同就是输出文件,其它都不需要修改。如果用R脚本,需要反复替换文件名,繁琐又容易出错。
  2. 每次绘图都需要不断的调整参数,时间久了不用,就忘记参数放哪了;或者调整次数过多,有了很多版本,最后不知道用哪个了。
为了简化绘图、维持脚本的一致,我用bash对R做了一个封装,然后就可以通过修改命令参数绘制不同的图了。
 
先看一看怎么使用
首先把测试数据存储到文件中方便调用。数据矩阵存储在heatmap_data.xls文件中;行注释存储在heatmap_row_anno.xls文件中;列注释存储在heatmap_col_anno.xls文件中。
# tab键分割,每列不加引号
write.table(data, file="heatmap_data.xls", sep="\t", row.names=T, col.names=T, quote=F)
# 如果看着第一行少了ID列不爽,可以填补下。-i参数直接对文件进行操作,1 指定第一行。在行首添加制表符
system("sed -i '1 s/^/ID\t/' heatmap_data.xls") write.table(row_anno, file="heatmap_row_anno.xls", sep="\t", row.names=T, col.names=T, quote=F)
write.table(col_anno, file="heatmap_col_anno.xls", sep="\t", row.names=T, col.names=T, quote=F)
然后用程序sp_pheatmap.sh绘图。
# -f: 指定输入的矩阵文件
# -d:指定是否计算Z-score,<none> (否), <row> (按行算), <col> (按列算)
# -P: 行注释文件
# -Q: 列注释文件
$ sp_pheatmap.sh -f heatmap_data.xls -d row -P heatmap_row_anno.xls -Q heatmap_col_anno.xls
一个回车就得到了图,字有点小,是因为图太大了,把图的宽和高缩小下试试。
# -u: 设置宽度,单位是inch
# -v: 设置高度,单位是inch
$ sp_pheatmap.sh -f heatmap_data.xls -d row -P heatmap_row_anno.xls -Q heatmap_col_anno.xls -u 8 -v 12
横轴的标记水平放置
# -A: 0, X轴标签选择0度
# -C: 自定义颜色,注意引号的使用,最外层引号与内层引号不同,引号之间无交叉
# -T: 指定给定的颜色的类型;如果给的是vector (如下面的例子), 则-T需要指定为vector; 否则结果会很怪异,只有俩颜色。
# -t: 指定图形的题目,注意引号的使用;参数中包含空格或特殊字符等都要用引号引起来作为一个整体。
$ sp_pheatmap.sh -f heatmap_data.xls -d row -P heatmap_row_anno.xls -Q heatmap_col_anno.xls -u 8 -v 12 -A 0 -C 'c("white", "blue")' -T vector -t "Heatmap of gene expression profile"

R语言学习 - 热图简化的更多相关文章

  1. R语言学习 - 热图绘制heatmap

    生成测试数据 绘图首先需要数据.通过生成一堆的向量,转换为矩阵,得到想要的数据. data <- c(1:6, 6:1, 6:1, 1:6, (6:1)/10, (1:6)/10, (1:6)/ ...

  2. R语言学习 - 热图美化

    实际应用中,异常值的出现会毁掉一张热图.这通常不是我们想要的.为了更好的可视化效果,需要对数据做些预处理,主要有对数转换,Z-score转换,抹去异常值,非线性颜色等方式. 对数转换 为了方便描述,假 ...

  3. R语言学习 - 线图绘制

    线图是反映趋势变化的一种方式,其输入数据一般也是一个矩阵. 单线图 假设有这么一个矩阵,第一列为转录起始位点及其上下游5 kb的区域,第二列为H3K27ac修饰在这些区域的丰度,想绘制一张线图展示. ...

  4. R语言学习 - 线图一步法

    首先把测试数据存储到文件中方便调用.数据矩阵存储在line_data.xls和line_data_melt.xls文件中 (直接拷贝到文件中也可以,这里这么操作只是为了随文章提供个测试文件,方便使用. ...

  5. R语言学习 第四篇:函数和流程控制

    变量用于临时存储数据,而函数用于操作数据,实现代码的重复使用.在R中,函数只是另一种数据类型的变量,可以被分配,操作,甚至把函数作为参数传递给其他函数.分支控制和循环控制,和通用编程语言的风格很相似, ...

  6. R语言学习路线和常用数据挖掘包(转)

    对于初学R语言的人,最常见的方式是:遇到不会的地方,就跑到论坛上吼一嗓子,然后欣然or悲伤的离去,一直到遇到下一个问题再回来.当然,这不是最好的学习方式,最好的方式是——看书.目前,市面上介绍R语言的 ...

  7. R语言学习笔记(二)

    今天主要学习了两个统计学的基本概念:峰度和偏度,并且用R语言来描述. > vars<-c("mpg","hp","wt") &g ...

  8. R语言学习笔记︱Echarts与R的可视化包——地区地图

    笔者寄语:感谢CDA DSC训练营周末上完课,常老师.曾柯老师加了小课,讲了echart与R结合的函数包recharts的一些基本用法.通过对比谢益辉老师GitHub的说明文档,曾柯老师极大地简化了一 ...

  9. R语言学习路线图-转帖

    本文分为6个部分,分别介绍初级入门,高级入门,绘图与可视化,计量经济学,时间序列分析,金融等. 1.初级入门 <An Introduction to R>,这是官方的入门小册子.其有中文版 ...

随机推荐

  1. 任务调度(三)——Timer的替代品ScheduledExecutorService简单介绍

    先前的两篇博文<任务调度(一)--jdk自带的Timer>和<任务调度(二)--jdk自带的Timer 动态改动任务运行计划>中,简介了一下Timer,能够实现几本的功能.可是 ...

  2. ExtJS ComboBox 下拉列表详细用法

    ExtJS ComboBox 下拉列表详细用法 标签: combobox 2015-06-14 23:23 5171人阅读 评论(2) 收藏 举报  分类: ExtJS(32)    目录(?)[+] ...

  3. java设计模式 -------- 行为模式 之 策略模式(4)

    [本文是自己学习所做笔记.欢迎转载,但请注明出处:http://blog.csdn.net/jesson20121020] 上面3节实现了从最初的对整形数组排序到最后能够对全部类型都能够依据须要定义自 ...

  4. CentOS 7 执行级别的切换

    CentOS 7 执行级别的切换 由命令行级别切换到窗体级别的命令未变:init 5或startx 由窗体级别切换到命令行级别的命令未变:init 3 新版本号的执行级别都定义在 /lib/syste ...

  5. struts2开发中一些概念的理解

    对象关系映射(orm)中的两个概念 VO 和 PO: 它们都包含一些属性及这些属性的get/set方法 1.VO:是值对象,可以理解为业务对象,存活在业务层,供业务逻辑使用,当前业务逻辑需要一组什么数 ...

  6. 千万数据条 用户特征数据 写入mysql

    from mysql_tool import * import copy s = ''' INSERT INTO `qqzone`.`myu` (`id`, `uid`, `age`, `gender ...

  7. Bootstrap button源码分析

    /* ======================================================================== * Bootstrap: button.js v ...

  8. 蓝书2.3 Trie字典树

    T1 IMMEDIATE DECODABILITY poj 1056 题目大意: 一些数字串 求是否存在一个串是另一个串的前缀 思路: 对于所有串经过的点权+1 如果一个点的end被访问过或经过一个被 ...

  9. 2-6 ES6常用语法

  10. 给独立搭建的博客启用https的过程

    申请SSL证书 我自己独立搭建的博客部署在阿里云服务器上,因此我就先搜索阿里云启用https的方法,网上有比较详细的讲解,在此提供一个参考网址: https://blog.csdn.net/csluc ...