[bzoj3209][花神的数论题] (数位dp+费马小定理)
Description
背景
众所周知,花神多年来凭借无边的神力狂虐各大 OJ、OI、CF、TC …… 当然也包括 CH 啦。
描述
话说花神这天又来讲课了。课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了。
花神的题目是这样的
设 sum(i) 表示 i 的二进制表示中 1 的个数。给出一个正整数 N ,花神要问你
派(Sum(i)),也就是 sum(1)—sum(N) 的乘积。
Input
一个正整数 N。
Output
一个数,答案模 10000007 的值。
Sample Input
Sample Output
HINT
对于样例一,1*1*2=2;
数据范围与约定
对于 100% 的数据,N≤10^15
Solution
简单的数位dp,是论文的简化
一样,预处理出f[i][j]代表i长度的二进制数下有j个1的数的数量
求解具体数据先枚举1的数量,转移一下就行,之后用快速幂连乘
难点:费马小定理的应用,对于极大的f[i][j],由于它是指数,无法直接和md取模,
根据 a^phi(p)≡1(mod p),得出把f[i][j]和phi(10000007)=9988440取模就行了
#include<iostream>
#define ur 9988440
#define md 10000007
#define LL long long
LL n,ans=1LL,f[][],tim[];
void init() {
f[][]=1LL;
for(int i=; i<=; i++) {
f[i][]=f[i-][];
for(int j=; j<=i; j++)
f[i][j]=(f[i-][j-]+f[i-][j])%ur; } }
LL Q_pow(LL x,LL p) {
LL res=1LL;
for(; p; p>>=1LL) {
if(p&1LL)
res=(res*x)%md;
x=(x*x)%md; }
return res; }
void calc() {
int cnt=;
for(int i=; ~i; i--) {
if(n&(1LL<<i)) {
for(int j=cnt; j<=; j++)
tim[j]=(tim[j]+f[i][j-cnt])%ur;
cnt++; } } }
int main() {
init();
std::ios::sync_with_stdio(false);
std::cin>>n; n++; calc();
for(int i=; i<=; i++)
ans=(ans*Q_pow(i,tim[i]))%md;
std::cout<<ans<<std::endl;
return ; }
[bzoj3209][花神的数论题] (数位dp+费马小定理)的更多相关文章
- BZOJ3209: 花神的数论题(数位DP)
题目: 3209: 花神的数论题 解析: 二进制的数位DP 因为\([1,n]\)中每一个数对应的二进制数是唯一的,我们枚举\(1\)的个数\(k\),计算有多少个数的二进制中有\(k\)个\(1\) ...
- bzoj3209 花神的数论题——数位dp
题目大意: 花神的题目是这样的 设 sum(i) 表示 i 的二进制表示中 1 的个数.给出一个正整数 N ,花神要问你 派(Sum(i)),也就是 sum(1)—sum(N) 的乘积. 要对1000 ...
- 【BZOJ3209】花神的数论题 数位DP
[BZOJ3209]花神的数论题 Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级 ...
- BZOJ 3209: 花神的数论题 [数位DP]
3209: 花神的数论题 题意:求\(1到n\le 10^{15}\)二进制1的个数的乘积,取模1e7+7 二进制最多50位,我们统计每种1的个数的数的个数,快速幂再乘起来就行了 裸数位DP..\(f ...
- BZOJ 3209 花神的数论题 数位DP+数论
题目大意:令Sum(i)为i在二进制下1的个数 求∏(1<=i<=n)Sum(i) 一道非常easy的数位DP 首先我们打表打出组合数 然后利用数位DP统计出二进制下1的个数为x的数的数量 ...
- bzoj 3209 花神的数论题 —— 数位DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3209 算是挺简单的数位DP吧,但还是花了好久才弄明白... 又参考了博客:https://b ...
- 洛谷$ P$4317 花神的数论题 数位$dp$
正解:数位$dp$ 解题报告: 传送门! 开始看到感觉有些新奇鸭,仔细一想发现还是个板子鸭,,, 考虑设$f_{i}$表示$sum[j]=i$的$j$的个数 日常考虑$dfs$呗,考虑变量要设哪些$Q ...
- 花神的数论题(数位dp)
规定sum[i] 为i里面含1的个数 ,求从1-N sum[i]的乘积. 数为64位内的,也就是sum[i]<=64的,这样可以dp求出1-N中含k个1的数有多少个,快速幂一下就可以了. 有个地 ...
- BZOJ3209 花神的数论题 【组合数学+数位DP+快速幂】*
BZOJ3209 花神的数论题 Description 背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦. 描述 话说花神这天又来讲课了.课后照例有 ...
随机推荐
- emma中文显示乱码问题解决
在Linux中如果使用mysql的图形客户端,个人感觉Emma还不错.但是emma默认用apt-get 安装的话,emma是不支持中文的,这个需要自己修改一下了配置文件,或者直接修改emma程序源文件 ...
- mybatis 注解写法 多层嵌套foreach,调用存储过程,批量插入数据
@Select("<script>" + "DECLARE @edi_Invoice_Details edi_Invoice_Details;" + ...
- PCB拼板之多款矩形排样算法实现--学习
参考资料:<一种新型pcb合拼求解过程> 拼版合拼问题描述和求解过程 合拼问题描述 Pcb合拼问题是通过二维矩形组合排样而演化与扩展而形成的一种新拼版问题,把每个零件都看成一个规则的矩形进 ...
- bzoj 1578: [Usaco2009 Feb]Stock Market 股票市场【背包】
参考:https://blog.csdn.net/mars_ch/article/details/53011234 我背包真是好不熟练啊-- 第一天买了第三天卖相当于第一天买了第二天卖第二天再买第三天 ...
- nginx 多进程 + io多路复用 实现高并发
一.nginx 高并发原理 简单介绍:nginx 采用的是多进程(单线程) + io多路复用(epoll)模型 实现高并发 二.nginx 多进程 启动nginx 解析初始化配置文件后会 创建(for ...
- LOJ#557. 「Antileaf's Round」你这衣服租来的吗(FHQ Treap+珂朵莉树)
题面 传送门 题解 好吧我是不太会复杂度分析-- 我们对于每种颜色用一个数据结构维护(比方说线段树或者平衡树,代码里写的平衡树),那么区间询问很容易就可以解决了 所以现在的问题是区间修改,如果区间颜色 ...
- less新手入门(四)—— Mixin Guards
八.Mixin Guards 有条件的 mixin 当您想要匹配表达式时,相对于简单的值或特性,Guards是有用的.如果您熟悉函数式编程,您可能已经遇到过它们. 为了尽可能地保持CSS的声明性质,在 ...
- redis 配置多个ip 解决方案
因为在 redis 中bind 指定的ip 其实为同一网段或localhost 监听ip,在这里配置 内网其他网段或者外网多个ip 后 重启 redis 是不会成功的, 这边建议使用 折中方案,开通 ...
- Kerberos 简介——教你做个好人
文章导读: 对称加密 非对称加密 数字证书 Kerberos认证流程 Hadoop生态利用Kerberos认证机制来识别可靠的服务和节点,保障Hadoop集群的安全,那么Kerberos到底是什么?为 ...
- C++学习笔记(三)之函数库
1.标准库函数 begin end begin 返回数组首地址 end 返回数组尾地址 2.const 在声明变量时对变量限制为只读,不允许修改 const int i = 5; 单个const作 ...