AtCoder Grand Contest 016 F - Games on DAG
题目传送门:https://agc016.contest.atcoder.jp/tasks/agc016_f
题目大意:
给定一个\(N\)点\(M\)边的DAG,\(x_i\)有边连向\(y_i\),保证\(x_i<y_i\),原图有\(2^M\)个生成子图,对于每个子图\(G'\),\(A,B\)两人正在玩一个游戏:初始时点1,2上有棋子,每次操作可以把某个棋子沿有向边移动一步,最后不能操作的人为输。问有多少个子图\(G'\)满足先手必胜
这种神题一看就不会写……首先考虑博弈,先手必胜的话当且仅当\(sg[1]!=sg[2]\),这样不好求,我们考虑求\(sg[1]=sg[2]\)的方案
考虑状压dp,记\(f[S]\)表示只考虑\(S\)这个点集,使得\(sg[1]=sg[2]\)的方案数
枚举\(S\)的一个子集\(T\),其补集为\(U\),假设\(U\)集合的\(sg\)值都为0,而\(T\)集合都不为0,,考虑转移:
\(U\)内部的边:一条都不能连
\(U\)到\(T\)的边:随便连
\(T\)到\(U\)的边:\(T\)中的点至少有一条出边
如何保证1,2的\(sg\)相同,保证他们在同一个集合里即可
至少连边和随意连边我们可以预处理出来,一次转移为\(O(n)\),所以总复杂度为\(O(3^n*n)\)
/*program from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
#define min(x,y) (x<y?x:y)
#define max(x,y) (x>y?x:y)
#define lowbit(x) ((x)&-(x))
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline char gc(){
static char buf[1000000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
}
inline int frd(){
int x=0,f=1; char ch=gc();
for (;ch<'0'||ch>'9';ch=gc()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=gc()) x=(x<<3)+(x<<1)+ch-'0';
return x*f;
}
inline int read(){
int x=0,f=1; char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<3)+(x<<1)+ch-'0';
return x*f;
}
inline void print(int x){
if (x<0) putchar('-'),x=-x;
if (x>9) print(x/10);
putchar(x%10+'0');
}
const int N=15,p=1e9+7;
bool map[N+10][N+10];
int f[N+10][(1<<N)+10],g[N+10][(1<<N)+10];
int dp[(1<<N)+10],ID[(1<<N)+10];
int mlt(int a,int b){
int res=1;
for (;b;b>>=1,a=1ll*a*a%p) if (b&1) res=1ll*res*a%p;
return res;
}
int main(){
int n=read(),m=read();
for (int i=1;i<=n;i++) ID[1<<(i-1)]=i;
for (int i=1;i<=m;i++){
int x=read(),y=read();
map[x][y]=1;
}
for (int i=1;i<=n;i++)
for (int sta=1;sta<1<<n;sta++)
f[i][sta]=f[i][sta^lowbit(sta)]+map[i][ID[lowbit(sta)]];
for (int i=1;i<=n;i++){
for (int sta=1;sta<1<<n;sta++){
int k=ID[lowbit(sta)];
if (!map[i][k]) g[i][sta]=g[i][sta^lowbit(sta)];
else g[i][sta]=(2ll*g[i][sta^lowbit(sta)]%p+1)%p;
}
}
for (int sta=1;sta<1<<n;sta++){
dp[sta]=1;
for (int sub=(sta-1)&sta;sub;sub=(sub-1)&sta){
if ((sub&1)&&((sta^sub)&2)) continue;
if ((sub&2)&&((sta^sub)&1)) continue;
int res=1,tmp=0;
for (int i=1;i<=n;i++) if (sub&(1<<(i-1))) res=1ll*res*g[i][sta^sub]%p;
for (int i=1;i<=n;i++) if ((sta^sub)&(1<<(i-1))) tmp+=f[i][sub];
res=1ll*res*mlt(2,tmp)%p;
dp[sta]=(dp[sta]+1ll*res*dp[sub])%p;
}
}
printf("%d\n",(mlt(2,m)-dp[(1<<n)-1]+p)%p);
return 0;
}
AtCoder Grand Contest 016 F - Games on DAG的更多相关文章
- Atcoder Grand Contest 016 F - Games on DAG(状压 dp)
洛谷题面传送门 & Atcoder 题面传送门 如何看待 tzc 补他一个月前做的题目的题解 首先根据 SG 定理先手必输当且仅当 \(\text{SG}(1)=\text{SG}(2)\). ...
- AtCoder Grand Contest 002 F:Leftmost Ball
题目传送门:https://agc002.contest.atcoder.jp/tasks/agc002_f 题目翻译 你有\(n*k\)个球,这些球一共有\(n\)种颜色,每种颜色有\(k\)个,然 ...
- AtCoder Grand Contest 016 E - Poor Turkeys
题目传送门:https://agc016.contest.atcoder.jp/tasks/agc016_e 题目大意: 有\(N\)只火鸡,现有\(M\)个人,每个人指定了两只火鸡\(x,y\),每 ...
- AtCoder Grand Contest 017 F - Zigzag
题目传送门:https://agc017.contest.atcoder.jp/tasks/agc017_f 题目大意: 找出\(m\)个长度为\(n\)的二进制数,定义两个二进制数的大小关系如下:若 ...
- AtCoder Grand Contest 016 C - +/- Rectangle
题目传送门:https://agc016.contest.atcoder.jp/tasks/agc016_c 题目大意: 给定整数\(H,W,h,w\),你需要判断是否存在满足如下条件的矩阵,如果存在 ...
- AtCoder Grand Contest 003 F - Fraction of Fractal
题目传送门:https://agc003.contest.atcoder.jp/tasks/agc003_f 题目大意: 给定一个\(H×W\)的黑白网格,保证黑格四连通且至少有一个黑格 定义分形如下 ...
- AtCoder Grand Contest 011 F - Train Service Planning
题目传送门:https://agc011.contest.atcoder.jp/tasks/agc011_f 题目大意: 现有一条铁路,铁路分为\(1\sim n\)个区间和\(0\sim n\)个站 ...
- AtCoder Grand Contest 016 B - Colorful Hats
题目传送门:https://agc016.contest.atcoder.jp/tasks/agc016_b 题目大意: 有\(N\)只猫,每只猫头上带着一个帽子,帽子有颜色,现在告诉你每只猫能看到的 ...
- AtCoder Grand Contest 010 F - Tree Game
题目传送门:https://agc010.contest.atcoder.jp/tasks/agc010_f 题目大意: 给定一棵树,每个节点上有\(a_i\)个石子,某个节点上有一个棋子,两人轮流操 ...
随机推荐
- WPF代码注意事项,开发常见问题,知识总结
代码注意事项: 1.代码实现的样式赋值 XXX.Style = TryFindResource("StyleName") as Style; 2.WPF中FindName方法的使用 ...
- debian old version cd and distribution archives
1 debian old version cd/dvd 官网的old version image,下载速度很慢 http://cdimage.debian.org/cdimage 下面这个靠谱,是镜像 ...
- pyspark 连 MongoDB复制集
解决问题思路: 核心:0-理解pyspark的执行与java jar的关系: 1-看控制台,看日志: 2-jar缺不缺,版本号,放哪里. [root@hadoop1 mylocalRepository ...
- 【腾讯bugly干货分享】精神哥手把手教你怎样智斗ANR
上帝说要有ANR,于是Bugly就有了ANR上报.那么ANR究竟是什么? 近期非常多童鞋问起精神哥ANR的问题,那么这次就来聊一下,鸡爪怎么泡才好吃.噢不,是怎样高速定位ANR. ANR是什么 简单说 ...
- (linux)wake_lock机制
Android的休眠唤醒主要基于wake_lock机制,只要系统中存在任一有效的wake_lock,系统就不能进入深度休眠,但可以进行设备的浅度休眠操作.wake_lock一般在关闭lcd.tp但 ...
- ADB结构及代码分析【转】
本文转载自:http://blog.csdn.net/happylifer/article/details/7682563 最近因为需要,看了下adb的源代码,感觉这个作者很牛,设计的很好,于是稍微做 ...
- UVA10480 Sabotage —— 最小割最大流
题目链接:https://vjudge.net/problem/UVA-10480 题解: 实际就是求最小割集. 1.什么是网络流图的“割”?答:一个边的集合,使得网络流图删除这些边之后,点被分成两部 ...
- POJ1459 Power Network —— 最大流
题目链接:https://vjudge.net/problem/POJ-1459 Power Network Time Limit: 2000MS Memory Limit: 32768K Tot ...
- 【Maven】pom.xml(2)
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/20 ...
- [Selenium] 操作页面元素等待时间
WebDriver 在操作页面元素等待时间时,提供2种等待方式:一个为显式等待,一个为隐式等待,其区别在于: 1)显式等待:明确地告诉 WebDriver 按照特定的条件进行等待,条件未达到就一直等待 ...