题目链接

  • 题意:

    n个点。m个边的有向图。每条边有一个权值,求一条最长的路径,使得路径上边值严格递增。输出路径长度

    (2 ≤ n ≤ 3·105; 1 ≤ m ≤ min(n·(n - 1), 3·105))
  • 分析:

    由于路径上会有反复点,而边不会反复。所以最開始想的是以边为状态进行DP,get TLE……后来想想。这个问题的复杂度一直分析的不太好。

    对于新图。每条边仅仅訪问了一次,单单考虑这个是O(E),可是訪问时也訪问了全部点,所以是O(V+E)

    考虑一下裸的DP怎样做:路径上有反复点,能够将状态具体化。dp[i][j]表示i点以j为结束边值的最长路。可是数据不同意这样。想想这个状态有一个非常大的问题,非常多状态是到达不了的,有非常多的无用状态。

    比方对于u->v,值为d的一条边,就须要更新dp[i][a]->dp[j][b],a<d、b>d的全部状态。

    比方,假设一个权值比較大的边先更新了u->v,那么对于之后的权值比較小的边。有一部分状态就是用不到的。还有。假设真的能够用这种DP方式来解问题。在DP的时候,明显能够发现,非常多状态是能够合并的。每次更新和查询的时候都是处理一个区间,也就是说。这一个区间上的全部状态是等价的,即能够合并。看看这个合并有什么特点:对于确定的一条边(u->v,
    d)对于u的状态中,小于d的是能够合并的,还有一个角度看。也就是说。对于确定的边,仅仅有全部的j < d的状态才是有可能转移的状态。那么考虑一下,假设我们将边先排好序,那么在每一条边增加的时候,全部的状态都是有效状态了,既然都是有效状态(即都是有可能进行转移的),那么事实上就不是必需记录第二维状态了。DP[i]表示处理到当前边之前,以i结束的最长路径长度。

    至此,问题可解。既然是排序解决,必定要处理的就是两个值同样的情况,两个数组就可以。

    当前问题(问题A)对照一下这个问题(问题B),有一些相似性:问题B的路径也是须要递增的(假设将一条合法路径上的全部開始时间和关闭时间按顺序写下来),可是和A一比就有一个明显的特点。一个边有两个值。相同的先考虑二维DP。有效状态也是比当前边的起始状态小的。可是更新之后的状态的值就不一定了,由于更新的状态的值是当前边的第二个属性,所以对于(1,
    5)、(2, 6),就没有一个明显的先后影响顺序了。而问题A的有效状态和B一样。可是更新后的状态的值必定都是边值(排序之后,对于之后的边也是有效的)。这样考虑。B问题用DP解决就有点没有思路了,可是。再和A比較后发现。B给了一个条件:起点是确定的;而A是不定起点。

    既然求得是确定起点的路径,那么就能够往最短路上想想。

    题目要求的是时间最短。那么就能够把时间看作距离来最短路就可以。


const int MAXN = 1100000;

int dp[MAXN], f[MAXN];

struct Edge
{
int u, v, d;
bool operator< (const Edge& rhs) const
{
return d < rhs.d;
}
} ipt[MAXN]; int main()
{
int n, m;
while (~RII(n, m))
{
CLR(dp, 0); REP(i, m)
RIII(ipt[i].u, ipt[i].v, ipt[i].d);
sort(ipt, ipt + m);
REP(i, m)
{
int nxt = i;
while (nxt + 1 < m && ipt[i].d == ipt[nxt + 1].d)
nxt++;
FE(j, i, nxt)
{
int u = ipt[j].u, v = ipt[j].v;
f[v] = max(f[v], dp[u] + 1);
}
FE(j, i, nxt)
{
int v = ipt[j].v;
dp[v] = f[v];
}
i = nxt;
}
int ans = 0;
FE(i, 1, n)
ans = max(ans, dp[i]);
WI(ans);
}
return 0;
}

Codeforces Round #261 (Div. 2)——Pashmak and Graph的更多相关文章

  1. Codeforces Round #261 (Div. 2)——Pashmak and Buses

    题目链接 题意: n个人,k个车,d天.每一个人每天能够坐随意一个车.输出一种情况保证:不存在两个人,每天都在同一辆车上 (1 ≤ n, d ≤ 1000; 1 ≤ k ≤ 109). 分析: 比赛中 ...

  2. Codeforces Round #261 (Div. 2)[ABCDE]

    Codeforces Round #261 (Div. 2)[ABCDE] ACM 题目地址:Codeforces Round #261 (Div. 2) A - Pashmak and Garden ...

  3. Codeforces Round #485 (Div. 2) F. AND Graph

    Codeforces Round #485 (Div. 2) F. AND Graph 题目连接: http://codeforces.com/contest/987/problem/F Descri ...

  4. Codeforces Round #261 (Div. 2) E (DP)

    E. Pashmak and Graph Pashmak's homework is a problem about graphs. Although he always tries to do hi ...

  5. Codeforces Round #261 (Div. 2) E. Pashmak and Graph DP

    http://codeforces.com/contest/459/problem/E 不明确的是我的代码为啥AC不了,我的是记录we[i]以i为结尾的点的最大权值得边,然后wa在第35  36组数据 ...

  6. Codeforces Round 261 Div.2 E Pashmak and Graph --DAG上的DP

    题意:n个点,m条边,每条边有一个权值,找一条边数最多的边权严格递增的路径,输出路径长度. 解法:先将边权从小到大排序,然后从大到小遍历,dp[u]表示从u出发能够构成的严格递增路径的最大长度. dp ...

  7. Codeforces Round #261 (Div. 2)459D. Pashmak and Parmida&#39;s problem(求逆序数对)

    题目链接:http://codeforces.com/contest/459/problem/D D. Pashmak and Parmida's problem time limit per tes ...

  8. Codeforces Round #261 (Div. 2) B. Pashmak and Flowers 水题

    题目链接:http://codeforces.com/problemset/problem/459/B 题意: 给出n支花,每支花都有一个漂亮值.挑选最大和最小漂亮值得两支花,问他们的差值为多少,并且 ...

  9. Codeforces Round #261 (Div. 2)459A. Pashmak and Garden(数学题)

    题目链接:http://codeforces.com/problemset/problem/459/A A. Pashmak and Garden time limit per test 1 seco ...

随机推荐

  1. 剑指Offer(书):重建二叉树

    题目:输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的前序遍历和中序遍历的结果中都不含重复的数字.例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2, ...

  2. Uncaught ReferenceError: 板栗 is not defined at HTMLButtonElement.onclick (view:1)

    对JS传值一直以为都是随便传过去就行,直到今天遇到了中文传值的问题 中文传值不能够需要在调用的位置加 对于要传的值加单引号或者双引号 比如说下面这个样子,我这里还还记反斜杠注释 '<button ...

  3. LINUX常用文件说明

    一.网络配置 1.修改主机名 /etc/sysconfig/network或/etc/hosts 2.开启或关闭网卡 ifconfig eth0 down/up 3.linuxa下查看一个网卡绑定的所 ...

  4. JavaScript中变量、作用域和内存问题(JavaScript高级程序设计第4章)

    一.变量 (1)ECMAScript变量肯能包含两种不同的数据类型的值:基本类型值和引用类型值.基本类型值指的是简单的数据段,引用类型值指那些可能由多个值构成的对象. (2)基本数据类型是按值访问,可 ...

  5. [bzoj1787][Ahoi2008]Meet 紧急集合(lca)

    传送门 可以看出,三个点两两之间的lca会有一对相同,而另一个lca就是聚集点. 然后搞搞就可以求出距离了. ——代码 #include <cstdio> #include <cst ...

  6. bzoj1709 [Usaco2007 Oct]Super Paintball超级弹珠 暴力

    [Usaco2007 Oct]Super Paintball超级弹珠 Description 奶牛们最近从著名的奶牛玩具制造商Tycow那里,买了一套仿真版彩弹游戏设备(类乎于真人版CS). Bess ...

  7. BOOST asio 例程daytime不使用库编译方法

    在不使用lib库编译daytime client程序时,按照<Boost程序库完全开发指南>添加的定义 #define BOOST_REGEX_NO_LIB#define BOOST_DA ...

  8. python(4)- 字符编码

    一 什么是编码? 基本概念很简单.首先,我们从一段信息即消息说起,消息以人类可以理解.易懂的表示存在.我打算将这种表示称为“明文”(plain text).对于说英语的人,纸张上打印的或屏幕上显示的英 ...

  9. transient 关键字

    java语言的关键字,变量修饰符,如果用transient声明一个实例变量,当对象存储时,它的值不需要维持.换句话来说就是,用transient关键字标记的成员变量不参与序列化过程.   作用 Jav ...

  10. Intersection--poj1410(判断线段与矩形的关系)

    http://poj.org/problem?id=1410 题目大意:给你一个线段和矩形的对角两点  如果相交就输出'T'  不想交就是'F' 注意: 1,给的矩形有可能不是左上 右下  所以要先判 ...