洛谷 - P2261 - 余数求和
https://www.luogu.org/problemnew/show/P2261
看了一下题解,取模运算可以换成减法来做。 $a\%b=a-b*\lfloor\frac{a}{b}\rfloor$ ,所以求和式可以化简,然后用数论分块来搞。
#include<bits/stdc++.h>
using namespace std;
#define ll long long int main() {
ll n,k;
scanf("%lld%lld",&n,&k);
ll ans=n*k;
for(ll l=,r; l<=n; l=r+) {
if(k/l!=) {
r=min(k/(k/l),n);
} else {
//k/l==0,意味着l>k,所有的后面的下整都是0,分成同一块
r=n;
break;
}
ans-=(k/l)*(r-l+)*(l+r)/;
}
printf("%lld",ans);
return ;
}
洛谷 - P2261 - 余数求和的更多相关文章
- 洛谷P2261 余数求和
整除分块的小应用. 考虑到 k % x = k - (k / x) * x 所以把 x = 1...n 加起来就是 k * n - (k / i) * i i = 1...k(注意这里是k) 对于这个 ...
- 洛谷P2261余数求和
传送门啦 再一次见证了分块的神奇用法,在数论里用分块思想. 我们要求 $ ans = \sum\limits ^{n} _{i=1} (k % i) $ ,如果我没看错,这个题的暴力有 $ 60 $ ...
- 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)
上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...
- [洛谷P2261] [CQOI2007]余数求和
洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...
- 洛谷P2261 [CQOI2007] 余数求和 [数论分块]
题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...
- 洛谷 P2261 [CQOI2007]余数求和 解题报告
P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...
- 洛谷 P2261 [CQOI2007]余数求和
洛谷 一看就知道是一个数学题.嘿嘿- 讲讲各种分的做法吧. 30分做法:不知道,这大概是这题的难点吧! 60分做法: 一是直接暴力,看下代码吧- #include <bits/stdc++.h& ...
- 洛谷——P2261 [CQOI2007]余数求和
P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...
- 【洛谷P2261】余数求和
题目大意:给定 n, k,求\(\sum\limits_{i=1}^n k\%n\) 的值. 题解:除法分块思想的应用. \(x\%y=x-y\lfloor {x\over y}\rfloor\),因 ...
随机推荐
- [转] 一句shell命令搞定代码行数统计
今天面试时,突然被面试官问到怎样用shell命令搞定某个文件夹下java代码行数的统计. 想了一下,基本思路就是找到这个文件夹下面的所有java文件,然后每个文件统计一下代码,外层套个for循环,叠加 ...
- HDU2084_数塔【简单题】【数塔】
数塔 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submiss ...
- Task C# 多线程和异步模型 TPL模型 【C#】43. TPL基础——Task初步 22 C# 第十八章 TPL 并行编程 TPL 和传统 .NET 异步编程一 Task.Delay() 和 Thread.Sleep() 区别
Task C# 多线程和异步模型 TPL模型 Task,异步,多线程简单总结 1,如何把一个异步封装为Task异步 Task.Factory.FromAsync 对老的一些异步模型封装为Task ...
- sed 修连接文件,有坑
-bash-4.1# ll /etc/rc.local lrwxrwxrwx. 1 root root 13 Aug 15 2014 /etc/rc.local -> rc.d/rc.loc ...
- 把握linux内核设计思想(五):下半部机制之工作队列及几种机制的选择
[版权声明:尊重原创.转载请保留出处:blog.csdn.net/shallnet,文章仅供学习交流,请勿用于商业用途] 工作队列是下半部的第二种将工作推后运行形式.和软中断.task ...
- Ubuntu 16.04 同时使用python3.5
Python 3.x版本使用pip3,它会把你想下载的包放到usr/local/lib/python3.5/dist-packages/下,而非usr/local/lib/python2.7/dist ...
- Mysql 数据库中间件
读写分离:简单的说是把对数据库读和写的操作分开对应不同的数据库服务器,这样能有效地减轻数据库压力,也能减轻io压力.主数据库提供写操作,从数据库提供读操作,其实在很多系统中,主要是读的操作.当主数据库 ...
- 全卷积神经网络FCN理解
论文地址:https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf 这篇论文使用全卷积神经网络来做语义上的图像分割,开创了这一领 ...
- 通视频URL截取第一帧图片
为了方便直接给UIImage加个类别,以后什么时候使用可以直接调用. #import <UIKit/UIKit.h> @interface UIImage (Video) /** 通过视频 ...
- org.hibernate.id.IdentifierGenerationException错误解决方法
org.hibernate.id.IdentifierGenerationException: ids for this class must be manually assigned before ...