poj 1180 Batch Scheduling (斜率优化)
Batch Scheduling

$ solution: $
这应该是斜率优化中最经典的一道题目,虽然之前已经写过一道 $ catstransport $ 的题解了,但还是来回顾一下吧,这道题其实较那一道还是难一些,只不过 $ catstransport $ 很难找到最好码代码的式子。
首先单调队列优化是用来优化一些转移方程里面存在只与枚举的决策或当前状态中的单独某一个存在关系的项的动态规划,而我们的斜率优化是用来优化一些转移方程里面存在与枚举的决策和当前状态都有直接关系的项的动态规划的(当然斜率优化还需要这个项是随着枚举呈单调性的)。
我们先来分析一下这道题目,要将某些任务按顺序分批次处理,同一批次共用一个时间权值,每批次前要花时间预处理。因为它需要按时间顺序处理,所以我们可以想到线性DP,而且子任务的最优性是可以推广到全局的。可能有人会说最后一个限制会有后效性,但其实它很容易消去,我们只要在每一个批次转移时减去后面所有的任务会因为这个预处理的拖延而产生的额外花费即可。这样我们可以列出转移方程:
因为题目没说一定要将这些任务划分成多少批次,所以我们可以直接设 $ F[i] $ 表示将前 $ i $ 分任务划分完毕之后的最少花费,然后我们预处理处时间的前缀和 $ T[i] $ 还有费用的前缀和 $ S[i] $ 然后转移可以这样:
$ F[i]=^{min}_{0\leq k<j}{F[j]+S\times (S[N]-S[j])+T[i]\times (S[i]-S[j]) } $
这个式子是 $ n^2 $ 的复杂度,数据范围再次对我们说不,我们还要在优化:将与 $ j $ 无关的数提取出来,并去掉括号:
$ F[i]=^{min}_{0\leq k<j}{F[j]+S\times S[N]-S\times S[j]+T[i]\times S[i]-T[i]\times S[j] } $
$ F[i]=^{min}_{0\leq k<j}{F[j]-S\times S[j]-T[i]\times S[j] }+S\times S[N]+T[i]\times S[i] $
然后我们发现 $ max $ 函数里有与枚举的决策 $ j $ 和当前状态 $ i $ 都有直接关系的项 ( $ T[i]\times S[j] $ )而且 $ T[i] $ 是单调递增的,于是我们就可以用斜率优化了。将 $ S[j] $ 最为 $ x $ 轴,将 $ F[i]+S\times S[j] $ 作为 $ y $ 轴,然后每一个决策集合(我们所有的可以用的 $ j $ 都变成一个点),我们知道 $ T[i] $ (斜率)是单调递增的,所以只要这些点的的下凸壳即可!
$ code: $
#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#define ll long long
#define db double
#define inf 0x7fffffff
#define rg register int
using namespace std;
int n,s,sr=1;
ll v[300005];
ll t[300005];
ll f[300005];
ll q[300005];
inline int qr(){
register char ch; register bool sign=0; rg res=0;
while(!isdigit(ch=getchar())) if(ch=='-')sign=1;
while(isdigit(ch)) res=res*10+(ch^48),ch=getchar();
return sign?-res:res;
}
inline int get(int k){
if(sr<2)return q[sr];
rg l=1,r=sr-1,mid;
while(l<=r){
mid=(l+r)>>1;
if(f[q[mid+1]]-f[q[mid]]<k*(v[q[mid+1]]-v[q[mid]]))l=mid+1;
else r=mid-1;
}return q[l];
}
int main(){
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
n=qr(); s=qr();
for(rg i=1;i<=n;++i){
t[i]=t[i-1]+qr();
v[i]=v[i-1]+qr();
} q[1]=0;
for(rg i=1;i<=n;++i){
rg j=get(s+t[i]);
f[i]=f[j]-(s+t[i])*v[j]+v[i]*t[i]+s*v[n];
while(sr>1&&(f[i]-f[q[sr]])*(v[q[sr]]-v[q[sr-1]])<=(f[q[sr]]-f[q[sr-1]])*(v[i]-v[q[sr]])) --sr;
q[++sr]=i;
}printf("%lld\n",f[n]);
return 0;
}
poj 1180 Batch Scheduling (斜率优化)的更多相关文章
- POJ 1180 - Batch Scheduling - [斜率DP]
题目链接:http://poj.org/problem?id=1180 Description There is a sequence of N jobs to be processed on one ...
- POJ 1180 Batch Scheduling(斜率优化DP)
[题目链接] http://poj.org/problem?id=1180 [题目大意] N个任务排成一个序列在一台机器上等待完成(顺序不得改变), 这N个任务被分成若干批,每批包含相邻的若干任务. ...
- poj 1180:Batch Scheduling【斜率优化dp】
我会斜率优化了!这篇讲的超级棒https://blog.csdn.net/shiyongyang/article/details/78299894?readlog 首先列个n方递推,设sf是f的前缀和 ...
- POJ 1180 Batch Scheduling
BTW: 刚在图书馆借了本算法艺术与信息学竞赛. 我多次有买这本书的冲动, 但每次在试看之后就放弃了, 倒不是因为书太难, 而是写的实在是太差. 大家对这本书的评价很高, 我觉得多是因为书的内容, 而 ...
- POJ1180 Batch Scheduling -斜率优化DP
题解 将费用提前计算可以得到状态转移方程: $F_i = \min(F_j + sumT_i * (sumC_i - sumC_j) + S \times (sumC_N - sumC_j)$ 把方程 ...
- POJ 1180 Batch Scheduling (dp,双端队列)
#include <iostream> using namespace std; + ; int S, N; int T[MAX_N], F[MAX_N]; int sum_F[MAX_N ...
- P2365 任务安排 / [FJOI2019]batch(斜率优化dp)
P2365 任务安排 batch:$n<=10000$ 斜率优化入门题 $n^{3}$的dp轻松写出 但是枚举这个分成多少段很不方便 我们利用费用提前的思想,提前把这个烦人的$S$在后面的贡献先 ...
- POJ 3709 K-Anonymous Sequence - 斜率优化dp
描述 给定一个数列 $a$, 分成若干段,每段至少有$k$个数, 将每段中的数减少至所有数都相同, 求最小的变化量 题解 易得到状态转移方程 $F_i = \min(F_j + sum_i - su ...
- 【转】斜率优化DP和四边形不等式优化DP整理
(自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重 ...
随机推荐
- BZOJ 2882 工艺 ——后缀自动机 最小表示法
先说后缀自动机的做法. 直接把S串复制一遍成SS,然后建立后缀自动机,go边相当于在当前字符的后面插入,而son边可以看作在字符串前面加一个字符. 所以贪心的走字典序最小的边即可,而且根据后缀自动机的 ...
- [luoguP3317] [SDOI2014]重建(矩阵树定理)
传送门 为了搞这个题又是学行列式,又是学基尔霍夫矩阵. 矩阵树定理 本题题解 无耻地直接发链接,反正我也是抄的题解.. #include <cstdio> #include <cma ...
- P1136 迎接仪式 (动态规划)
题目描述 LHX教主要来X市指导OI学习工作了.为了迎接教主,在一条道路旁,一群Orz教主er穿着文化衫站在道路两旁迎接教主,每件文化衫上都印着大字.一旁的Orzer依次摆出“欢迎欢迎欢迎欢迎……”的 ...
- Codeforces983D. Arkady and Rectangles
$n \leq 100000$个矩形,一个一个覆盖在坐标系上,每个颜色都不一样,问最后能看到几种颜色. 由于后面的颜色可以覆盖前面的颜色,可以把颜色与时间联系上,第$i$个矩形颜色$i$来把时间维变成 ...
- Python入门--5--列表
python没有数组 蛋是有列表 列表里面可以有:整数,浮点数,字符串,对象 没有数组,没有数组,没有数组,不重要的也说三遍!! 一.创建列表 x = ['abc','sas','www'] ...
- Oracle的memory_max_target和memory_target修改和ORA-00845: MEMORY_TARGET not supported on this system错误解决
https://blog.csdn.net/sunny05296/article/details/56495599
- css3的一些新属性及部分用法
CSS3是CSS(层叠样式表)技术的升级版本,增加了很多新属性,我们在web开发中采用css3技术可以提高程序的性能以及用户体验.而且一般面试中会问到知道哪些新增加的属性,我们不可能将所有东西一一复述 ...
- Codeforces Gym 100418K Cards 组合数学
CardsTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/vjudge/contest/view.action? ...
- java基础之IO流(二)之字符流
java基础之IO流(二)之字符流 字符流,顾名思义,它是以字符为数据处理单元的流对象,那么字符流和字节流之间的关系又是如何呢? 字符流可以理解为是字节流+字符编码集额一种封装与抽象,专门设计用来读写 ...
- ios Crash Log 分析汇总
方法一: 1.xcode 有自带的symbolicatecrash,可以将.crash文件中的16进制地址转换成可读的函数地址. symbolicatecrash位于: /Applications/X ...