题目链接:https://vjudge.net/problem/POJ-1459

Power Network
Time Limit: 2000MS   Memory Limit: 32768K
Total Submissions: 29270   Accepted: 15191

Description

A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= pmax(u) of power, may consume an amount 0 <= c(u) <= min(s(u),cmax(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= lmax(u,v) of power delivered by u to v. Let Con=Σuc(u) be the power consumed in the net. The problem is to compute the maximum value of Con. 

An example is in figure 1. The label x/y of power station u shows that p(u)=x and pmax(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and lmax(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6. 

Input

There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of lmax(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of pmax(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of cmax(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input. Input data terminate with an end of file and are correct.

Output

For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.

Sample Input

2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
(3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
(0)5 (1)2 (3)2 (4)1 (5)4

Sample Output

15
6

Hint

The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The second data set encodes the network from figure 1.

Source

题意:

有np个供电站(只供电不用电)、nc个用电站(只用电不供电),以及n-np-nc个中转站(既不供电也不用电),且已经知道这些站的连接关系,问单位时间最多能消耗多少的电?

题解:

最大流问题。

1.建立超级源点,超级源点与每个供电站相连,且边的容量为供电站的最大供电量,表明流经此供电站的电量最多只能为自身的供电量。

2.建立超级汇点,每个用电站与超级汇点相连,且边的容量为用电站的最大用电量,表明流经此用电站的电量最多只能为自身的消耗量。

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int MAXN = 1e2+; int maze[MAXN][MAXN];
int gap[MAXN], dis[MAXN], pre[MAXN], cur[MAXN];
int flow[MAXN][MAXN]; int sap(int start, int end, int nodenum)
{
memset(cur, , sizeof(cur));
memset(dis, , sizeof(dis));
memset(gap, , sizeof(gap));
memset(flow, , sizeof(flow));
int u = pre[start] = start, maxflow = , aug = INF;
gap[] = nodenum; while(dis[start]<nodenum)
{
loop:
for(int v = cur[u]; v<nodenum; v++)
if(maze[u][v]-flow[u][v]> && dis[u] == dis[v]+)
{
aug = min(aug, maze[u][v]-flow[u][v]);
pre[v] = u;
u = cur[u] = v;
if(v==end)
{
maxflow += aug;
for(u = pre[u]; v!=start; v = u, u = pre[u])
{
flow[u][v] += aug;
flow[v][u] -= aug;
}
aug = INF;
}
goto loop;
} int mindis = nodenum-;
for(int v = ; v<nodenum; v++)
if(maze[u][v]-flow[u][v]> && mindis>dis[v])
{
cur[u] = v;
mindis = dis[v];
}
if((--gap[dis[u]])==) break;
gap[dis[u]=mindis+]++;
u = pre[u];
}
return maxflow;
} int main()
{
int n, np, nc, m;
while(scanf("%d%d%d%d", &n,&np,&nc,&m)!=EOF)
{
int start = n, end = n+;
memset(maze, , sizeof(maze));
for(int i = ; i<=m; i++)
{
int u, v, w;
while(getchar()!='(');
scanf("%d,%d)%d",&u,&v,&w);
maze[u][v] = w;
} for(int i = ; i<=np; i++)
{
int id, p;
while(getchar()!='(');
scanf("%d)%d", &id,&p);
maze[start][id] = p;
} for(int i = ; i<=nc; i++)
{
int id, p;
while(getchar()!='(');
scanf("%d)%d", &id,&p);
maze[id][end] = p;
} cout<< sap(start, end, n+) <<endl;
}
}

POJ1459 Power Network —— 最大流的更多相关文章

  1. poj1087 A Plug for UNIX & poj1459 Power Network (最大流)

    读题比做题难系列…… poj1087 输入n,代表插座个数,接下来分别输入n个插座,字母表示.把插座看做最大流源点,连接到一个点做最大源点,流量为1. 输入m,代表电器个数,接下来分别输入m个电器,字 ...

  2. poj1459 Power Network --- 最大流 EK/dinic

    求从电站->调度站->消费者的最大流,给出一些边上的容量.和电站和消费者能够输入和输出的最大量. 加入一个超级源点和汇点,建边跑模板就能够了. 两个模板逗能够. #include < ...

  3. POJ1459 Power Network(网络最大流)

                                         Power Network Time Limit: 2000MS   Memory Limit: 32768K Total S ...

  4. poj1459 Power Network (多源多汇最大流)

    Description A power network consists of nodes (power stations, consumers and dispatchers) connected ...

  5. POJ1459 - Power Network

    原题链接 题意简述 原题看了好几遍才看懂- 给出一个个点,条边的有向图.个点中有个源点,个汇点,每个源点和汇点都有流出上限和流入上限.求最大流. 题解 建一个真 · 源点和一个真 · 汇点.真 · 源 ...

  6. POJ1459 Power Network 网络流 最大流

    原文链接http://www.cnblogs.com/zhouzhendong/p/8326021.html 题目传送门 - POJ1459 题意概括 多组数据. 对于每一组数据,首先一个数n,表示有 ...

  7. POJ-1459 Power Network(最大流)

    https://vjudge.net/problem/POJ-1459 题解转载自:優YoU http://user.qzone.qq.com/289065406/blog/1299339754 解题 ...

  8. [poj1459]Power Network(多源多汇最大流)

    题目大意:一个网络,一共$n$个节点,$m$条边,$np$个发电站,$nc$个用户,$n-np-nc$个调度器,每条边有一个容量,每个发电站有一个最大负载,每一个用户也有一个最大接受量.问最多能供给多 ...

  9. POJ-1459 Power Network---最大流

    题目链接: https://cn.vjudge.net/problem/POJ-1459 题目大意: 简单的说下题意(按输入输出来讲,前面的描述一堆的rubbish,还用来误导人),给你n个点,其中有 ...

随机推荐

  1. vector容器中添加和删除元素

    添加元素: 方法一: insert() 插入元素到Vector中 iterator insert( iterator loc, const TYPE &val ); //在指定位置loc前插入 ...

  2. TYVJ3680 找妹子

    时间: 1000ms / 空间: 1200KiB / Java类名: Main 背景 本题由 @fjzzq2002 提供,已奖励20金币. 描述 sps是zzq的好伙伴. sps一天叫来了许多个妹子. ...

  3. 在线预览Word,Excel

    今天在项目中遇到了在线预览word的需求,经过查阅资料与测试发现可以解决问题,特做记录: 方式: http://view.officeapps.live.com/op/view.aspx?src= s ...

  4. leetcode 15. 3Sum 二维vector

    传送门 15. 3Sum My Submissions Question Total Accepted: 108534 Total Submissions: 584814 Difficulty: Me ...

  5. Python入门--9--格式化

    字符串格式化符号含义    符   号    说     明      %c    格式化字符及其ASCII码      %s    格式化字符串      %d    格式化整数      %o   ...

  6. HDU - 5572 An Easy Physics Problem (计算几何模板)

    [题目概述] On an infinite smooth table, there's a big round fixed cylinder and a little ball whose volum ...

  7. Android-屏幕适配经验总结

    本文记录一些适配问题的研究,基础概念不做过多介绍. Android在做屏幕适配的时候一般考虑两个因素:分辨率和dpi.分辨率是屏幕在横向.纵向上的像素点数总和,一般用"宽x高"的形 ...

  8. 深入理解iPhone数据持久化(手把手教你iphone开发 – 基础篇)

    在所有的移动开发平台数据持久化都是很重要的部分:在j2me中是rms或保存在应用程序的目录中,在symbian中可以保存在相应的磁盘目录中和数据库中.symbian中因为权限认证的原因,在3rd上大多 ...

  9. sourcetree帮助文档

    Overview SourceTree可以在bookmarks界面跟踪所有的git和mercurial项目.可以概览工程中是否有需要提交的文件等.添加新的bookmark很简单,可以通过两种方式,通过 ...

  10. SolidEdge 如何绘制局部视图 局部放大图

    创建局部视图(局部放大图),先选择要创建局部放大图的视图,然后绘制一个小圆,然后绘制一个大圆即可.   如果要绘制不规则形状的局部放大图,则点击了局部放大图之后,点击绘制草图的按钮   随后可以用相切 ...