bzoj1925 [Sdoi2010] 地精部落【DP】
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1925
一个多月前“过”了这道题,还自欺欺人地认为懂了这道题,这直接导致了昨晚多校联测2的T3爆炸,现在想来简直是道水题,不过还是要有“懂得这题怎么做”的前提。。。地精部落这道题可以约化为另一个问题:对于n的排列,告诉你每个数相比于前一个数是大了、小了、还是都可以,求这样的排列的方案数。
先说这一题叭,看过很多其他人的题解,依然是云里雾里,因此我会写的详细一点。我的写法可能与其他人有些不同,但是本质是完全一样的。
首先令f(i, j)表示已经考虑完i的排列了,最后一个数是j,且它为山谷的方案数。这里特别注意!这个i的排列并不一定非要是闭区间[1, i]里的数!这种排列仅仅表示一个大小关系,一种相对的关系,有种离散化的感觉(也可以理解为考虑完i个数了,最后一个数是其中第j小的,且它为山谷的方案数)。这一点非常重要,一定要理解,如不理解可以先往下看,我后面会举个例子。类似地,令g(i, j)表示已经考虑完i的排列了,最后一个数是j,且它为山峰的方案数。那么状态转移方程就是:
①
为什么是这样呢?首先f数组的值一定是从g数组转移过来的,因为如果这个是山谷,那么上一个就是山峰。那么为什么等于后面那一串呢?考虑这个例子,7253,这是你填完最后一个数字3后的某个方案。很显然,这种方案应该属于状态f(4, 2),因为已经考虑4个数了,3是其中第2小的。那么f(4, 2)这种状态可以从g(3, 2)与g(3, 3)转移过来,在7253这个例子中,f(4, 2)是从g(3, 2)转移过来的,因为在725中,5是第2小的。那么前i - 1个数中,最小能小到多少呢?(当然是考虑最小的,因为越大,就越可能转移到当前状态,所以最大能大到第i - 1小)答案是能小到j。因为前i个数中第j小的,必然比前i - 1个数中第j小的要小!可以通过刚刚7253这个例子来感受一下,3是前4个数中第2小的,5是前3个数中第2小的。
这个弄懂了之后,我们又可以发现一个很容易发现、非常显然的结论:把一个符合条件的n的排列,对于没一个数i,将其改为n + 1 - i,新的排列依然符合条件,并且原来的山峰变成山谷,山谷变成山峰,因此有:
②
联立①②,得

用一个辅助变量s,就可以O(1)转移了,最后ans = (f[n][1] + f[n][2] + ... + f[n][n]) * 2,因为f表示的是最后一个为山谷,根据那个显然的结论,可以得到等量的最后一个为山峰的方案数。在加一个滚动数组压缩空间就可以过了。
#include <cstdio>
#include <cstring> const int maxn = 4205; int n, p, f[2][maxn], s, ans; int main(void) {
scanf("%d%d", &n, &p);
f[1][1] = 1;
for (int i = 2; i <= n; ++i) {
memset(f[i & 1], 0, sizeof f[0]);
s = 0;
for (int j = i - 1; j; --j) {
s = (s + f[i & 1 ^ 1][i - j]) % p;
f[i & 1][j] = s;
}
}
for (int j = 1; j <= n; ++j) {
ans = (ans + f[n & 1][j]) % p;
}
printf("%d\n", (ans << 1) % p);
return 0;
}
bzoj1925 [Sdoi2010] 地精部落【DP】的更多相关文章
- [BZOJ1925][SDOI2010]地精部落(DP)
题意 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为 N 的山脉 H可分 为从左到右的 N 段,每段有一个独一无二的高度 Hi,其中Hi是1到N ...
- BZOJ 1925: [Sdoi2010]地精部落( dp )
dp(i,j)表示1~i的排列中, 以1~j为开头且开头是下降的合法方案数 这种数列具有对称性, 即对于一个满足题意且开头是上升的n的排列{an}, 令bn = n-an+1, 那么{bn}就是一个满 ...
- [bzoj1925][Sdoi2010]地精部落_递推_动态规划
地精部落 bzoj-1925 Sdoi-2010 题目大意:给你一个数n和模数p,求1~n的排列中满足每一个数的旁边两个数,要么一个是边界,要么都比它大,要么都比它小(波浪排列个数) 注释:$1\le ...
- BZOJ1925 [Sdoi2010]地精部落 【dp】
题目 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为 N 的山脉 H可分 为从左到右的 N 段,每段有一个独一无二的高度 Hi,其中Hi是1到N ...
- 2018.10.20 bzoj1925: [Sdoi2010]地精部落(dp)
传送门 dp好题. 设f[i][j]f[i][j]f[i][j]表示iii个数结尾是jjj且结尾两个数递增的方案数. 那么显然可以对称的定义出g[i][j]g[i][j]g[i][j]表示iii个数结 ...
- BZOJ1925 [Sdoi2010]地精部落 动态规划
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1925 题意概括 给出n,n<=4200,问1~n这些数的排列中,有多少满足一下性质: 性质: ...
- BZOJ1925[SDOI2010]地精部落
Description 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为 N 的山脉 H可分 为从左到右的 N 段,每段有一个独一无二的高度 Hi, ...
- 【BZOJ】1925: [Sdoi2010]地精部落 DP+滚动数组
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1925 题意:输入一个数N(1 <= N <= 4200),问将这些数排列成折线 ...
- 【czy系列赛】czy的后宫4 && bzoj1925 [Sdoi2010]地精部落
[问题描述] czy有很多妹子,妹子虽然数量很多,但是质量不容乐观,她们的美丽值全部为负数(喜闻乐见). czy每天都要带N个妹子到机房,她们都有一个独一无二的美丽值,美丽值为-1到-N之间的整数.他 ...
随机推荐
- Android切图注意事项
1.App Logo大小共五种: 48*48 72*72 96*96 144*144 192*192 2. App启动页所需尺寸: 320×480 480×800 720*1280 1080*1920 ...
- php.ini中extension默许的地址到底在哪里设置的
原文: http://www.myexception.cn/php/1436096.html ----------------------------------------------------- ...
- 【甘道夫】并行化频繁模式挖掘算法FP Growth及其在Mahout下的命令使用
今天调研了并行化频繁模式挖掘算法PFP Growth及其在Mahout下的命令使用,简单记录下试验结果,供以后查阅: 环境:Jdk1.7 + Hadoop2.2.0单机伪集群 + Mahout0.6 ...
- HDU 1176-免费馅饼(DP_逆推)
免费馅饼 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submi ...
- 从程序员角度看ELF | Linux-Programming (转)
★概要: 这片文档从程序员的角度讨论了linux的ELF二进制格式.介绍了一些ELF执行 文件在运行控制的技术.展示了如何使用动态连接器和如何动态装载ELF. 我们也演示了如何在LINUX使用GNU ...
- android WIFI信息获取
在androi中WIFI信息的获取能够通过系统提供的WIFI Service获取 [java] WifiManager wifi_service = (WifiManager)getSystemSe ...
- Ant中批量调用TestNG的XML文件,并调用TestNgXlst生成漂亮的html测试报告
from:http://blog.csdn.net/bwgang/article/details/7865184 1.在Ant中设置如下: <target name="run_test ...
- 2016/04/29 ①cms分类 ② dede仿站制作 步骤 十个步骤 循环生成菜单 带子菜单的菜单 标签 栏目 栏目内容列表 内容图片列表
cms 系统还有: phpcms 企业站 Xiaocms 织梦 企业站 wordpress (博客) Ecshop 商城 Ecmall 多用户 Discms 记账 方维 订餐 团购 CMS ...
- Cordova打包vue项目(Android)
准备工作: 安装好必要环境: vue-cli,webpack,node.js,android环境 (http://cordova.axuer.com/docs/zh-cn/latest/guide/p ...
- mybatis批量操作数据
批量查询语句: List<MoiraiProductResource> selectBatchInfo(List<Long> idList); <!-- 批量查询 --& ...