折半搜索,map会T所以用hash表来存状态

#include<iostream>
#include<cstdio>
#include<map>
using namespace std;
const int N=10,mod=739391;
int n,m,k[N],p[N],w,a[155][N],h[1000005],cnt;
long long ans;
map<int,int>mp;
struct qwe
{
int ne,to,va;
}e[4000005];
void update(int x)
{//cerr<<x<<endl;
int u=(x%mod+mod)%mod,fl=0;
for(int i=h[u];i;i=e[i].ne)
if(e[i].to==x)
{
e[i].va++;//cerr<<e[i].va<<endl;
fl=1;
break;
}
if(!fl)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=x;
e[cnt].va=1;
h[u]=cnt;
}
}
int ques(int x)
{//cerr<<x<<endl;
int u=(x%mod+mod)%mod;
for(int i=h[u];i;i=e[i].ne)
if(e[i].to==x)
return e[i].va;
return 0;
}
int ksm(int a,int b)
{
int r=1;
while(b)
{
if(b&1)
r=r*a;
a=a*a;
b>>=1;
}
return r;
}
void dfs(int w,int v)
{
if(!w)
{
update(v);
return;
}
for(int i=1;i<=m;i++)
dfs(w-1,v+k[w]*a[i][w]);
}
void dfs2(int w,int v)
{
if(!w)
{
ans+=ques(-v);
return;
}
for(int i=1;i<=m;i++)
dfs2(w-1,v+k[n-w+1]*a[i][n-w+1]);
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d%d",&k[i],&p[i]);
for(int i=1;i<=m;i++)
for(int j=1;j<=n;j++)
a[i][j]=ksm(i,p[j]);
int w=n/2;
dfs(w,0);
dfs2(n-w,0);
printf("%lld\n",ans);
return 0;
}

poj 1186 方程的解数【折半dfs+hash】的更多相关文章

  1. POJ 1186 方程的解数

    方程的解数 Time Limit: 15000MS   Memory Limit: 128000K Total Submissions: 6188   Accepted: 2127 Case Time ...

  2. 计蒜客 方程的解数(DFS)

    问题描述 输出格式 输出一行,输出一个整数,表示方程的整数解的个数. 样例输入 - 样例输出 #include <stdio.h> #include <string.h> #i ...

  3. Meet in the middle算法总结 (附模板及SPOJ ABCDEF、BZOJ4800、POJ 1186、BZOJ 2679 题解)

    目录 Meet in the Middle 总结 1.算法模型 1.1 Meet in the Middle算法的适用范围 1.2Meet in the Middle的基本思想 1.3Meet in ...

  4. 计蒜客 方程的解数 dfs

    题目: https://www.jisuanke.com/course/2291/182237 思路: 来自:https://blog.csdn.net/qq_29980371/article/det ...

  5. NOI2001 方程的解数

    1735 方程的解数 http://codevs.cn/problem/1735/ 2001年NOI全国竞赛  时间限制: 5 s  空间限制: 64000 KB     题目描述 Descripti ...

  6. [ NOI 2001 ] 方程的解数

    \(\\\) \(Description\) 已知一个 \(N\) 元高次方程: \[ k_1x_1^{p_1}+k_2x_2^{p_2}+...+k_nx_n^{p_n}=0 \] 要求所有的 \( ...

  7. cogs 304. [NOI2001] 方程的解数(meet in the middle)

    304. [NOI2001] 方程的解数 ★★☆   输入文件:equation1.in   输出文件:equation1.out   简单对比时间限制:3 s   内存限制:64 MB 问题描述 已 ...

  8. P5691 [NOI2001]方程的解数

    题意描述 方程的解数 求方程 \(\sum_{i=1}^{n}k_ix_i^{p_i}=0(x_i\in [1,m])\) 的解的个数. 算法分析 远古 NOI 的题目就是水 类似于这道题. 做过这道 ...

  9. CH 2401 - 送礼 - [折半DFS+二分]

    题目链接:传送门 描述 作为惩罚,GY被遣送去帮助某神牛给女生送礼物(GY:貌似是个好差事)但是在GY看到礼物之后,他就不这么认为了.某神牛有N个礼物,且异常沉重,但是GY的力气也异常的大(-_-b) ...

随机推荐

  1. Android OpenGL ES(六)----进入三维在代码中创建投影矩阵和旋转矩阵

    我们如今准备好在代码中加入透视投影了. Android的Matrix类为它准备了两个方法------frustumM()和perspectiveM(). 不幸的是.frustumM()的个缺陷,它会影 ...

  2. Java中常见的注解

    Java中常见的注解 1.JDK自带的注解@Override  @Deprecated  @Suppvisewarnings 常见第三方注解 Spring:@Autowired  @Service  ...

  3. 标准C头文件

    ISO C标准定义的头文件: POSIX标准定义的必须的头文件: POSIX标准定义的XSI可选头文件: POSIX标准定义的可选头文件:

  4. 新装Linux系统没有网卡驱动的解决办法和步骤

    Linux下查看网卡驱动和版本信息 - CSDN博客 https://blog.csdn.net/guyan1101/article/details/72770424/ 检查网卡是否加载 - Linu ...

  5. ajax异步加载问题

    使用ajax异步加载数据,在之后需要用到这个数据时,应该将之后的js一并写入ajax函数中,否则后面的js不能找到动态拼接的dom节点. 或者将其封装成方法,在ajax动态加载数据的最后调用该方法.

  6. (C)非局部跳转语句(setjmp和longjmp)

    1. 特点 非goto语句在函数内实施跳转,而是在栈上跳过若干调用帧,返回到当前函数调用路径上的某一语句. 头文件包含#include Void longjmp(jmp_buf env,int val ...

  7. POJ1077 Eight —— 双向BFS

    主页面:http://www.cnblogs.com/DOLFAMINGO/p/7538588.html (代码一直在精简完善……) 代码一:两个BFS, 两段代码: 用step控制“你一步, 我一步 ...

  8. YTU 2203: 最小节点(线性表)

    2203: 最小节点(线性表) 时间限制: 1 Sec  内存限制: 128 MB 提交: 243  解决: 204 题目描述 (线性表)设有一个由正整数组成的无序(向后)单链表,编写完成下列功能的算 ...

  9. java时间类型转换 JsonValueProcessor

    问题描述: java里面时间类型转换成json数据就成这样了:"createTime":{"date":30,"day":3,"h ...

  10. 让振动器振动起来——Vibrator的使用

    AndroidManifest.xml 获取系统权限 <uses-permission android:name="android.permission.VIBRATE"/& ...