poj 1186 方程的解数【折半dfs+hash】
折半搜索,map会T所以用hash表来存状态
#include<iostream>
#include<cstdio>
#include<map>
using namespace std;
const int N=10,mod=739391;
int n,m,k[N],p[N],w,a[155][N],h[1000005],cnt;
long long ans;
map<int,int>mp;
struct qwe
{
int ne,to,va;
}e[4000005];
void update(int x)
{//cerr<<x<<endl;
int u=(x%mod+mod)%mod,fl=0;
for(int i=h[u];i;i=e[i].ne)
if(e[i].to==x)
{
e[i].va++;//cerr<<e[i].va<<endl;
fl=1;
break;
}
if(!fl)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=x;
e[cnt].va=1;
h[u]=cnt;
}
}
int ques(int x)
{//cerr<<x<<endl;
int u=(x%mod+mod)%mod;
for(int i=h[u];i;i=e[i].ne)
if(e[i].to==x)
return e[i].va;
return 0;
}
int ksm(int a,int b)
{
int r=1;
while(b)
{
if(b&1)
r=r*a;
a=a*a;
b>>=1;
}
return r;
}
void dfs(int w,int v)
{
if(!w)
{
update(v);
return;
}
for(int i=1;i<=m;i++)
dfs(w-1,v+k[w]*a[i][w]);
}
void dfs2(int w,int v)
{
if(!w)
{
ans+=ques(-v);
return;
}
for(int i=1;i<=m;i++)
dfs2(w-1,v+k[n-w+1]*a[i][n-w+1]);
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d%d",&k[i],&p[i]);
for(int i=1;i<=m;i++)
for(int j=1;j<=n;j++)
a[i][j]=ksm(i,p[j]);
int w=n/2;
dfs(w,0);
dfs2(n-w,0);
printf("%lld\n",ans);
return 0;
}
poj 1186 方程的解数【折半dfs+hash】的更多相关文章
- POJ 1186 方程的解数
方程的解数 Time Limit: 15000MS Memory Limit: 128000K Total Submissions: 6188 Accepted: 2127 Case Time ...
- 计蒜客 方程的解数(DFS)
问题描述 输出格式 输出一行,输出一个整数,表示方程的整数解的个数. 样例输入 - 样例输出 #include <stdio.h> #include <string.h> #i ...
- Meet in the middle算法总结 (附模板及SPOJ ABCDEF、BZOJ4800、POJ 1186、BZOJ 2679 题解)
目录 Meet in the Middle 总结 1.算法模型 1.1 Meet in the Middle算法的适用范围 1.2Meet in the Middle的基本思想 1.3Meet in ...
- 计蒜客 方程的解数 dfs
题目: https://www.jisuanke.com/course/2291/182237 思路: 来自:https://blog.csdn.net/qq_29980371/article/det ...
- NOI2001 方程的解数
1735 方程的解数 http://codevs.cn/problem/1735/ 2001年NOI全国竞赛 时间限制: 5 s 空间限制: 64000 KB 题目描述 Descripti ...
- [ NOI 2001 ] 方程的解数
\(\\\) \(Description\) 已知一个 \(N\) 元高次方程: \[ k_1x_1^{p_1}+k_2x_2^{p_2}+...+k_nx_n^{p_n}=0 \] 要求所有的 \( ...
- cogs 304. [NOI2001] 方程的解数(meet in the middle)
304. [NOI2001] 方程的解数 ★★☆ 输入文件:equation1.in 输出文件:equation1.out 简单对比时间限制:3 s 内存限制:64 MB 问题描述 已 ...
- P5691 [NOI2001]方程的解数
题意描述 方程的解数 求方程 \(\sum_{i=1}^{n}k_ix_i^{p_i}=0(x_i\in [1,m])\) 的解的个数. 算法分析 远古 NOI 的题目就是水 类似于这道题. 做过这道 ...
- CH 2401 - 送礼 - [折半DFS+二分]
题目链接:传送门 描述 作为惩罚,GY被遣送去帮助某神牛给女生送礼物(GY:貌似是个好差事)但是在GY看到礼物之后,他就不这么认为了.某神牛有N个礼物,且异常沉重,但是GY的力气也异常的大(-_-b) ...
随机推荐
- android-problem——remount of /system failed: Read-only file system
adb remount后仍旧不能对system进行读写.需要进行adb disable-verity 在Android6.0 (Android M)userdebug版本上(eng版本不存在该问题), ...
- HTML页面底部无用留白
HTML页面底部无用留白,可以再footer样式中加入: overflow: hidden; 如有错误,请您指正~
- 第二种BitBand操作的方式 - 让IDE来帮忙算地址
要使用Bitband来訪问外设,一定要得出相应的映射地址.人工计算肯定是不靠谱的,并且也没人想这么干.因此能够通过Excel,拉个列表来计算.想想,这也是一个不错的招数.可是后来想想,还是嫌麻烦,毕竟 ...
- 博客系统-评论or评论树
url配置 url(r'^commentTree/(?P<article_id>\d+)/',views.commentTree), url(r'^(?P<username>. ...
- Codeforces 558C Amr and Chemistry
题意: n个数.每次能够选一个数 让其 *=2 或者 /=2 问至少操作多少次使得全部数相等. 思路: 对于每一个数,计算出这个数能够变成哪些数,以及变成那个数的最小步数,用两个数组保存 cnt[i] ...
- F08标准中Open命令的newunit选项
从gfortran 4.5开始Open命令开始支持newunit选项,示例如下: integer :: u open(newunit=u, file="log.txt", posi ...
- Android_Service详解及实例
转自:http://blog.csdn.net/guolin_blog/article/details/11952435 http://blog.csdn.net/guolin_blog/art ...
- Domino函件收集器的配置及使用方法
[背景] 今天一个朋友问我这样一个问题,他们OA的应用数据库和接口数据库部署在两台不同的server. 接口server主要负责和第三方系统进行集成,第三方系统调接口创建OA单据,OA系统进行审 ...
- Phoenix(SQL On HBase)安装和使用报告
一.为什么使用Phoenix二.安装Phoenix2.1 兼容问题?2.2 编译CDH版本的Phoenix2.3 安装Phoenix到CDH环境中三.Phoenix的使用3.1 phoenix的4种调 ...
- 如何查看Java进程并获取进程ID?
1. 在 LINUX 命令平台输入 1-2 个字符后按 Tab 键会自动补全后面的部分(前提是要有这个东西,例如在装了 tomcat 的前提下, 输入 tomcat 的 to 按 tab).2. ps ...