poj 1186 方程的解数【折半dfs+hash】
折半搜索,map会T所以用hash表来存状态
#include<iostream>
#include<cstdio>
#include<map>
using namespace std;
const int N=10,mod=739391;
int n,m,k[N],p[N],w,a[155][N],h[1000005],cnt;
long long ans;
map<int,int>mp;
struct qwe
{
int ne,to,va;
}e[4000005];
void update(int x)
{//cerr<<x<<endl;
int u=(x%mod+mod)%mod,fl=0;
for(int i=h[u];i;i=e[i].ne)
if(e[i].to==x)
{
e[i].va++;//cerr<<e[i].va<<endl;
fl=1;
break;
}
if(!fl)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=x;
e[cnt].va=1;
h[u]=cnt;
}
}
int ques(int x)
{//cerr<<x<<endl;
int u=(x%mod+mod)%mod;
for(int i=h[u];i;i=e[i].ne)
if(e[i].to==x)
return e[i].va;
return 0;
}
int ksm(int a,int b)
{
int r=1;
while(b)
{
if(b&1)
r=r*a;
a=a*a;
b>>=1;
}
return r;
}
void dfs(int w,int v)
{
if(!w)
{
update(v);
return;
}
for(int i=1;i<=m;i++)
dfs(w-1,v+k[w]*a[i][w]);
}
void dfs2(int w,int v)
{
if(!w)
{
ans+=ques(-v);
return;
}
for(int i=1;i<=m;i++)
dfs2(w-1,v+k[n-w+1]*a[i][n-w+1]);
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d%d",&k[i],&p[i]);
for(int i=1;i<=m;i++)
for(int j=1;j<=n;j++)
a[i][j]=ksm(i,p[j]);
int w=n/2;
dfs(w,0);
dfs2(n-w,0);
printf("%lld\n",ans);
return 0;
}
poj 1186 方程的解数【折半dfs+hash】的更多相关文章
- POJ 1186 方程的解数
方程的解数 Time Limit: 15000MS Memory Limit: 128000K Total Submissions: 6188 Accepted: 2127 Case Time ...
- 计蒜客 方程的解数(DFS)
问题描述 输出格式 输出一行,输出一个整数,表示方程的整数解的个数. 样例输入 - 样例输出 #include <stdio.h> #include <string.h> #i ...
- Meet in the middle算法总结 (附模板及SPOJ ABCDEF、BZOJ4800、POJ 1186、BZOJ 2679 题解)
目录 Meet in the Middle 总结 1.算法模型 1.1 Meet in the Middle算法的适用范围 1.2Meet in the Middle的基本思想 1.3Meet in ...
- 计蒜客 方程的解数 dfs
题目: https://www.jisuanke.com/course/2291/182237 思路: 来自:https://blog.csdn.net/qq_29980371/article/det ...
- NOI2001 方程的解数
1735 方程的解数 http://codevs.cn/problem/1735/ 2001年NOI全国竞赛 时间限制: 5 s 空间限制: 64000 KB 题目描述 Descripti ...
- [ NOI 2001 ] 方程的解数
\(\\\) \(Description\) 已知一个 \(N\) 元高次方程: \[ k_1x_1^{p_1}+k_2x_2^{p_2}+...+k_nx_n^{p_n}=0 \] 要求所有的 \( ...
- cogs 304. [NOI2001] 方程的解数(meet in the middle)
304. [NOI2001] 方程的解数 ★★☆ 输入文件:equation1.in 输出文件:equation1.out 简单对比时间限制:3 s 内存限制:64 MB 问题描述 已 ...
- P5691 [NOI2001]方程的解数
题意描述 方程的解数 求方程 \(\sum_{i=1}^{n}k_ix_i^{p_i}=0(x_i\in [1,m])\) 的解的个数. 算法分析 远古 NOI 的题目就是水 类似于这道题. 做过这道 ...
- CH 2401 - 送礼 - [折半DFS+二分]
题目链接:传送门 描述 作为惩罚,GY被遣送去帮助某神牛给女生送礼物(GY:貌似是个好差事)但是在GY看到礼物之后,他就不这么认为了.某神牛有N个礼物,且异常沉重,但是GY的力气也异常的大(-_-b) ...
随机推荐
- Android OpenGL ES(六)----进入三维在代码中创建投影矩阵和旋转矩阵
我们如今准备好在代码中加入透视投影了. Android的Matrix类为它准备了两个方法------frustumM()和perspectiveM(). 不幸的是.frustumM()的个缺陷,它会影 ...
- Java中常见的注解
Java中常见的注解 1.JDK自带的注解@Override @Deprecated @Suppvisewarnings 常见第三方注解 Spring:@Autowired @Service ...
- 标准C头文件
ISO C标准定义的头文件: POSIX标准定义的必须的头文件: POSIX标准定义的XSI可选头文件: POSIX标准定义的可选头文件:
- 新装Linux系统没有网卡驱动的解决办法和步骤
Linux下查看网卡驱动和版本信息 - CSDN博客 https://blog.csdn.net/guyan1101/article/details/72770424/ 检查网卡是否加载 - Linu ...
- ajax异步加载问题
使用ajax异步加载数据,在之后需要用到这个数据时,应该将之后的js一并写入ajax函数中,否则后面的js不能找到动态拼接的dom节点. 或者将其封装成方法,在ajax动态加载数据的最后调用该方法.
- (C)非局部跳转语句(setjmp和longjmp)
1. 特点 非goto语句在函数内实施跳转,而是在栈上跳过若干调用帧,返回到当前函数调用路径上的某一语句. 头文件包含#include Void longjmp(jmp_buf env,int val ...
- POJ1077 Eight —— 双向BFS
主页面:http://www.cnblogs.com/DOLFAMINGO/p/7538588.html (代码一直在精简完善……) 代码一:两个BFS, 两段代码: 用step控制“你一步, 我一步 ...
- YTU 2203: 最小节点(线性表)
2203: 最小节点(线性表) 时间限制: 1 Sec 内存限制: 128 MB 提交: 243 解决: 204 题目描述 (线性表)设有一个由正整数组成的无序(向后)单链表,编写完成下列功能的算 ...
- java时间类型转换 JsonValueProcessor
问题描述: java里面时间类型转换成json数据就成这样了:"createTime":{"date":30,"day":3,"h ...
- 让振动器振动起来——Vibrator的使用
AndroidManifest.xml 获取系统权限 <uses-permission android:name="android.permission.VIBRATE"/& ...