http://acm.hdu.edu.cn/showproblem.php?pid=6129

【题意】

  • 对于一个长度为n的序列a,我们可以计算b[i]=a1^a2^......^ai,这样得到序列b
  • 重复这样的操作m次,每次都是从上次求出的序列a得到一个新序列b
  • 给定初始的序列,求重复m次操作后得到的序列

【方法一】

假定n=5,我们模拟一次可以发现,经过m次操作后a1在b1......bn中出现的次数为:

  • m=0: 1 0 0 0 0
  • m=2: 1 2 3 4 5
  • m=3: 1 3 6 10 15
  • m=4:1 4 10 20 35
  • m=5:1 5 15 35 70

(画个杨辉三角出来就可以看出这些都是组合数)

容易推出来操作m次后,a1在答案bi中出现的次数C(m+i-2,m-1),由于是异或,我们只需知道C(m+i-2,m-1)%2

根据Lucas定理(2是素数),x=m-1,y=m+i-2,C(x,y)%2为x和y写成二进制后每一位C(xi,yi)%2的连乘,可以发现,只有C(0,1)是0,也就是C(x,y)%2==0  <=> y的二进制位置为1的集合是x的子集 <=> (x&y)==y

这道题m=1的时候是n^2的,然而这个复杂度是可以过的(奇怪)

附上AC代码

【AC】

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=2e5+;
ll a[maxn];
ll b[maxn];
int n;
ll m;
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
memset(b,,sizeof(b));
scanf("%d%I64d",&n,&m);
for(int i=;i<=n;i++)
{
scanf("%I64d",&a[i]);
}
for(int i=;i<=n;i++)
{
ll y=m-;
ll x=m+i-;
if((x&y)==y)
{
for(int j=i;j<=n;j++)
{
b[j]^=a[j-i+];
}
}
}
for(int i=;i<=n;i++)
{
if(i==) printf("%I64d",b[i]);
else printf(" %I64d",b[i]);
}
puts("");
}
return ;
}

【经验】

  • 把a,b二进制表达后b中1的位置是a中1的位置的子集    <=> (a&b)==b
  • C(2^k-1,i)%2==1                     <=>               0<=i<=2^k-1

********************************************************************************************************************************

【方法二】

dp(i, j)表示第i次变换第j列的数。 
dp(i, j) = dp(i, j-1)^dp(i-1, j) = dp(i, j-2)^dp(i-1, j-1)^dp(i-1, j-1)^dp(i-2, j) = dp(i, j-2)^dp(i-2, j) => dp(i, j-2^n)^dp(i-2^n, j) 
从m中的最高位或最低位开始递推。

类似于dp[i][j]=dp[i-1][j]+dp[i][j-1],最后求dp[m][j](1<=j<=n)我们可以开一个滚动数组从前往后递推(dp[i][j]=dp[i-1][j]+dp[i][j+1]则是从后往前推)

 for(int i=;i<=m;i++)
{
for(int j=;j<=n;j++)
{
dp[j]^=dp[j-];
}
}

dp[i][j]=dp[i-1][j]^dp[i][j-1]

计算dp[i][j]=dp[i-2^n][j]^dp[i][j-2^n],用lowbit从右往左枚举m的每一位,每一次都对整列进行更新。

 while(m)
{
int x=lowbit(m);
for(int j=x;j<=n;j++)
{
dp[j]^=dp[j-x];
}
m-=x;
}

dp[i][j]=dp[i-2^n]^dp[i][j-2^n]

【AC】

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=2e5+;
int n,m;
int dp[maxn];
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
for(int i=;i<n;i++)
{
scanf("%d",&dp[i]);
}
while(m)
{
int x=m&(-m);
for(int i=x;i<n;i++)
{
dp[i]^=dp[i-x];
}
m-=x;
}
for(int i=;i<n;i++)
{
if(i==) printf("%d",dp[i]);
else printf(" %d",dp[i]);
}
puts("");
}
return ;
}

递推+lowbit+滚动数组

***********************************************************************************************************************************

【方法三】

http://m.blog.csdn.net/silence255713/article/details/77200056

【(好题)组合数+Lucas定理+公式递推(lowbit+滚动数组)+打表找规律】2017多校训练七 HDU 6129 Just do it的更多相关文章

  1. 51nod 1126 - 求递推序列的第N项 - [找规律]

    题目链接:https://cn.vjudge.net/problem/51Nod-1126 有一个序列是这样定义的:f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + ...

  2. 递推:Number Sequence(mod找规律)

    解题心得: 1.对于数据很大,很可怕,不可能用常规手段算出最后的值在进行mod的时候,可以思考找规律. 2.找规律时不必用手算(我傻,用手算了好久).直接先找前100项进行mod打一个表出来,直接看就 ...

  3. 【组合数+Lucas定理模板】HDU 3037 Saving

    acm.hdu.edu.cn/showproblem.php?pid=3037 [题意] m个松果,n棵树 求把最多m个松果分配到最多n棵树的方案数 方案数有可能很大,模素数p 1 <= n, ...

  4. HYSBZ(BZOJ) 4300 绝世好题(位运算,递推)

    HYSBZ(BZOJ) 4300 绝世好题(位运算,递推) Description 给定一个长度为n的数列ai,求ai的子序列bi的最长长度,满足bi&bi-1!=0(2<=i<= ...

  5. uoj86 mx的组合数 (lucas定理+数位dp+原根与指标+NTT)

    uoj86 mx的组合数 (lucas定理+数位dp+原根与指标+NTT) uoj 题目描述自己看去吧( 题解时间 首先看到 $ p $ 这么小还是质数,第一时间想到 $ lucas $ 定理. 注意 ...

  6. Nowcoder 练习赛 17 C 操作数 ( k次前缀和、矩阵快速幂打表找规律、组合数 )

    题目链接 题意 :  给定长度为n的数组a,定义一次操作为: 1. 算出长度为n的数组s,使得si= (a[1] + a[2] + ... + a[i]) mod 1,000,000,007: 2. ...

  7. luogu4345 [SHOI2015]超能粒子炮·改(组合数/Lucas定理)

    link 输入\(n,k\),求\(\sum_{i=0}^k{n\choose i}\)对2333取模,10万组询问,n,k<=1e18 注意到一个2333这个数字很小并且还是质数这一良好性质, ...

  8. 【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 95  Solved: 33[Submit][Statu ...

  9. 组合数(Lucas定理) + 快速幂 --- HDU 5226 Tom and matrix

    Tom and matrix Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=5226 Mean: 题意很简单,略. analy ...

随机推荐

  1. Spring MVC异常统一处理(包括普通请求异常以及ajax请求异常)

    通常SpringMVC对异常的配置都是返回某个jsp视图给用户,但是通过ajax方式发起请求,即使发生异常,前台也无法获得任何异常提示信息.因此需要对异常进行统一的处理,对于普通请求以及ajax请求的 ...

  2. static心得

    TextClass text; 吉晨   static注意 只要显式调用一个类的某一个static变量,那么就会连带static块,所有static变量一起调用,哪怕不去new一个对象,这时候已经对这 ...

  3. Jsoup获取全国地区数据(省市县镇村)(续) 纯干货分享

    前几天给大家分享了一下,怎么样通过jsoup来从国家统计局官网获取全国省市县镇村的数据.错过的朋友请点击这里.上文说到抓取到数据以后,我们怎么转换成我们想要格式呢?哈哈,解析方式可能很简单,但是有一点 ...

  4. [转]八款开源Android游戏引擎

    八款开源Android游戏引擎 1.Angle Angle是一款专为Android平台设计的,敏捷且适合快速开发的2D游戏引擎,基于OpenGL ES技术开发.该引擎全部用Java代码编写,并且可以根 ...

  5. sourcegrid统计报表画法以及EXCEL导出内容代码完全版

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...

  6. 讲课笔记1——meta标签、表格标签

    图片属性:src(source): 图片的来源(路径),可以放置本地图片,也可以放网上的图片的url地址 [相对路径:        ./:当前目录            ../:跳出当前目录,到上一 ...

  7. 二、pandas入门

    import numpy as np import pandas as pd Series: #创建Series方法1 s1=pd.Series([1,2,3,4]) s1 # 0 1 # 1 2 # ...

  8. Latex 分块矩阵的处理

    在 \(\mathrm{\LaTeX}\) 中,如果想输入类似的矩阵: 可以这样实现: \[ \left[ \begin{array}{cc|cc|c} \lambda & 0 & 1 ...

  9. mysql 复制中的 paxso 的两阶段和事务两阶段的区别

    1.普通的两阶段是 推送不同的数据给不同的主机,一旦出现网络中断,造成问题是不可服务. 因为本身有锁,故无所谓. 2.paxos 的两阶段是将相同的 数据给不同的主机,一旦超过半数即可认为成功.

  10. 使用JAVA抓取网页数据

    一.使用 HttpClient 抓取网页数据 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 ...