【Codevs1922】骑士共存问题(最小割,二分图最大独立集转最大匹配)
题意:
在一个n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示。棋盘
上某些方格设置了障碍,骑士不得进入。
对于给定的n*n个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以放置多少个骑士,使得它们彼此互不攻击。
n<=200,m<=n^2
思路:经典的二分图最大独立集,采用黑白点染色的思想。
如果按照相邻点黑白不同染色,可以发现每次跳到的点必定与现在所在点不同色,二分图最大匹配即可。
每切断一条黑白点之间的边就是少放了一个骑士,用最小割算出最少要切断几条边,总数减去有障碍的再减切断的边数就是最大匹配数,最大独立集又可以转化为最大匹配数。
这里用最小割来解决,因为不能允许任何黑白点之间的任何一条边有流量,符合最小割的思想。
const dx:array[..]of longint=(-,-,-,-,,,,);
dy:array[..]of longint=(-,,-,,-,,-,);
var head,vet,next,len,fan,gap,dis:array[..]of longint;
b,num,a:array[..,..]of longint;
n,m,i,tot,x,y,k,j,source,src,s:longint; procedure add(a,b,c:longint);
begin
inc(tot);
next[tot]:=head[a];
vet[tot]:=b;
len[tot]:=c;
head[a]:=tot;
end; function min(x,y:longint):longint;
begin
if x<y then exit(x);
exit(y);
end; function dfs(u,aug:longint):longint;
var e,v,val,flow,t:longint;
begin
if u=src then exit(aug);
flow:=; val:=s-;
e:=head[u];
while e<> do
begin
v:=vet[e];
if len[e]> then
begin
if dis[u]=dis[v]+ then
begin
t:=dfs(v,min(len[e],aug-flow));
len[e]:=len[e]-t;
len[fan[e]]:=len[fan[e]]+t;
flow:=flow+t;
if dis[source]>=s then exit(flow);
if aug=flow then break;
end;
val:=min(val,dis[v]);
end;
e:=next[e];
end;
if flow= then
begin
dec(gap[dis[u]]);
if gap[dis[u]]= then dis[source]:=s;
dis[u]:=val+;
inc(gap[dis[u]]);
end;
exit(flow);
end; function maxflow:longint;
var ans:longint;
begin
fillchar(gap,sizeof(gap),);
fillchar(dis,sizeof(dis),);
gap[]:=s; ans:=;
while dis[source]<s do ans:=ans+dfs(source,maxlongint);
exit(ans);
end; begin
assign(input,'codevs1922.in'); reset(input);
assign(output,'codevs1922.out'); rewrite(output);
read(n,m);
for i:= to n do
for j:= to n do
begin
inc(s); a[i,j]:=(i+j+) mod ; num[i,j]:=s;
end;
for i:= to m do
begin
read(x,y);
b[x,y]:=;
end;
s:=n*n+;
for i:= to n do
for j:= to n do
if (a[i,j]=)and(b[i,j]=) then
begin
for k:= to do
begin
x:=i+dx[k]; y:=j+dy[k];
if (x>)and(x<=n)and(y>)and(y<=n)and(b[x,y]=) then
begin
fan[tot+]:=tot+;
fan[tot+]:=tot+;
add(num[i,j],num[x,y],);
add(num[x,y],num[i,j],);
end;
end;
end;
source:=; src:=;
for i:= to n do
for j:= to n do
if a[i,j]= then
begin
fan[tot+]:=tot+;
fan[tot+]:=tot+;
add(source,num[i,j],);
add(num[i,j],source,);
end
else if b[i,j]= then
begin
fan[tot+]:=tot+;
fan[tot+]:=tot+;
add(num[i,j],src,);
add(src,num[i,j],);
end;
writeln(n*n-m-maxflow);
close(input);
close(output);
end.
【Codevs1922】骑士共存问题(最小割,二分图最大独立集转最大匹配)的更多相关文章
- 【最小割/二分图最大独立集】【网络流24题】【P2774】 方格取数问题
Description 给定一个 \(n~\times~m\) 的矩阵,每个位置有一个正整数,选择一些互不相邻的数,最大化权值和 Limitation \(1~\leq~n,~m~\leq~100\) ...
- 洛谷.3355.骑士共存问题(最小割ISAP)
题目链接 一个很暴力的想法:每个点拆点,向不能同时存在的连边 但是这样边太多了,而且会有很多重复.我不会说我还写了还没过样例 我们实际就是在做一个最大匹配.考虑原图,同在黄/红格里的骑士是互不攻击的, ...
- P3355 骑士共存问题 (最小割)
题意:nxn的棋盘 有m个坏点 求能在棋盘上放多少个马不会互相攻击 题解:这个题仔细想想居然和方格取数是一样的!!! 每个马他能攻击到的地方的坐标 (x+y)奇偶性不一样 于是就黑白染色 s-> ...
- Codevs1922 骑士共存问题
1922 骑士共存问题 题目描述 Description 在一个n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入. 对于给定的n*n个方格的国 ...
- POJ3308 Paratroopers(最小割/二分图最小点权覆盖)
把入侵者看作边,每一行每一列都是点,选取某一行某一列都有费用,这样问题就是选总权最小的点集覆盖所有边,就是最小点权覆盖. 此外,题目的总花费是所有费用的乘积,这时有个技巧,就是取对数,把乘法变为加法运 ...
- BZOJ 1934 Vote 善意的投票(最小割+二分图)
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1934 题目大意: 幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉.对他们来说,这个问题 ...
- 【wikioi】1922 骑士共存问题(网络流/二分图匹配)
用匈牙利tle啊喂?和网络流不都是n^3的吗(匈牙利O(nm), isap O(n^2m) 但是isap实际复杂度很优的(二分图匹配中,dinic是O(sqrt(V)*E),不知道isap是不是一样. ...
- BZOJ 3774 最优选择 (最小割+二分图)
题面传送门 题目大意:给你一个网格图,每个格子都有$a_{ij}$的代价和$b_{ij}$的回报,对于格子$ij$,想获得$b_{ij}$的回报,要么付出$a_{ij}$的代价,要么$ij$周围四联通 ...
- BZOJ3175:[TJOI2013]攻击装置(二分图最大独立集)
Description 给定一个01矩阵,其中你可以在0的位置放置攻击装置.每一个攻击装置(x,y)都可以按照“日”字攻击其周围的 8个位置(x-1,y-2),(x-2,y-1),(x+1,y-2), ...
随机推荐
- SAP云平台,区块链,超级账本和智能合约
前一篇文章<Hyperledger Fabric on SAP Cloud Platform>,我的同事Aviva已经给大家介绍了基于区块链技术的超级账本(Hyperledger)的一些概 ...
- python 判断路径是否存在
import os os.path.exists(文件绝对路径)
- Perl 使用哈希的引用
$ref = \%hash_clomnname_linevalue; $hash_of_whole_table{$table_name} = {%$ref};
- pytorch中的view
https://ptorch.com/news/59.html view()相当于reshape(),其中参数若为-1表示当前的size根据其余size推断
- mysql存储引擎中InnoDB与Myisam的区别及应用场景
1. 区别: (1)事务处理: MyISAM是非事务安全型的,而InnoDB是事务安全型的(支持事务处理等高级处理): (2)锁机制不同: MyISAM是表级锁,而InnoDB是行级锁: (3)sel ...
- xheditor的参数配置详解
2.2. 初始化参数列表 2.3. API函数接口列表 2.4. 上传程序开发规范 2.5. 插件开发指南 2.6. 皮肤设计指南 2.2. 初始化参数列表 初始化参数示例代码: $('#elm1') ...
- java在线聊天项目0.9版 实现把服务端接收到的信息返回给每一个客户端窗口中显示功能之客户端接收
客户端要不断接收服务端发来的信息 与服务端不断接收客户端发来信息相同,使用线程的方法,在线程中循环接收 客户端修改后代码如下: package com.swift; import java.awt.B ...
- 常用JavaScript正则表达式整理
在表单验证中,正则表达式书写起来特别繁琐,本文整理了15个常用的JavaScript正则表达式,其中包括用户名.密码强度.整数.数字.电子邮件地址(Email).手机号码.身份证号.URL地址. IP ...
- AT2172 Shik and Travel
题目描述: luogu 题解: 二分+暴力$vector$+$dfs$. 记录下所有可能的子树内合法方案,双指针+归并合并. 代码: #include<vector> #include&l ...
- lsof指令使用简介
lsof替代了netstat和ps的全部工作.它可以带来那些工具所能带来的一切,而且要比那些工具多得多 最重要的是,当你给它传递选项时,默认行为是对结果进行“或”运算.因此,如果是用-i来拉出一个端口 ...