传送门

完了我连背包都不会了……

考虑暴力,先枚举最小的数是哪个,设大小为$d_i$,个数为$k_i$,所有比它小的数的总和是$sum$,然后把所有比它小的全都装进背包,它以及比他大的做一个多重背包,那么设$dp[j]$表示在剩下的这些数里取的总和为$j$时的方案数,那么$$ans+=\sum_{j=m-sum-d_i+1}^{m-sum} dp[j]$$

上面的式子意思就是,将所有比它小的全放进去之后,枚举背包剩余的空间,统计所有方案数。因为不能让把任何大于等于它的在统计之前就放进去,所以下界是$m-sum-d_i+1$

然后现在的问题就是怎么统计了才能过。我们可以从大到小枚举,这样的话每做到一个物品就只需要对它自己做多重背包,不需要重新dp了

接下来的操作真的是学到了……在做多重背包的时候把$j$按照模$d_i$的取值分为不同的组,然后时间复杂度就能优化到$O(nm)$

简单来讲的话,就是转移的时候$dp[j]+=dp[j-d_i]+dp[j-d_i*2]...+dp[j-d_i*k_i]$,发现每一个$j$只会被与它模$d_i$同余的转移到,于是我们枚举这一个余数,统计与它同余的数的前缀和,然后从小到大转移并不断维护前缀和即可(真的很妙)

 //minamoto
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=,M=1e5+,mod=;
struct node{
int k,d;
inline bool operator <(const node &b)const{return d<b.d;}
}a[N];
int n,m,ans,tot,dp[][M],t;
inline int add(int x,int y){return x+y>=mod?x+y-mod:x+y;}
inline int del(int x,int y){return x-y<?x-y+mod:x-y;}
void ins(int k,int w){
int sum,H;
for(int d=;d<=w-;++d){
H=sum=;
for(int j=;j<=(m-d)/w;++j){
sum=add(sum,dp[t^][j*w+d]);
if(H<j-k) sum=del(sum,dp[t^][(H++)*w+d]);
dp[t][j*w+d]=sum;
}
}
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),m=read();
for(int i=;i<=n;++i) a[i].k=read(),a[i].d=read(),tot+=a[i].k*a[i].d;
if(tot<=m) return puts(""),;
sort(a+,a++n);
dp[][]=;
for(int i=n;i;--i){
tot-=a[i].k*a[i].d,t^=;
ins(a[i].k-,a[i].d);
for(int j=max(m-tot-a[i].d+,);j<=m-tot;++j) ans=add(ans,dp[t][j]);
ins(a[i].k,a[i].d);
}
printf("%d\n",ans);
return ;
}

洛谷P4241 采摘毒瘤的更多相关文章

  1. 洛谷 U19159 采摘毒瘤

    题目背景 Salamander见到路边有如此多的毒瘤,于是见猎心喜,从家里拿来了一个大袋子,准备将一些毒瘤带回家. 题目描述 路边共有nn 种不同的毒瘤,第i 种毒瘤有k_i 个,每个需要占据d_i  ...

  2. 洛谷 P4240 - 毒瘤之神的考验(数论+复杂度平衡)

    洛谷题面传送门 先扯些别的. 2021 年 7 月的某一天,我和 ycx 对话: tzc:你做过哪些名字里带"毒瘤"的题目,我做过一道名副其实的毒瘤题就叫毒瘤,是个虚树+dp yc ...

  3. 洛谷P4240 毒瘤之神的考验 【莫比乌斯反演 + 分块打表】

    题目链接 洛谷P4240 题解 式子不难推,分块打表真的没想到 首先考虑如何拆开\(\varphi(ij)\) 考虑公式 \[\varphi(ij) = ij\prod\limits_{p | ij} ...

  4. 洛谷P2179 骑行川藏

    什么毒瘤... 解:n = 1的,发现就是一个二次函数,解出来一个v的取值范围,选最大的即可. n = 2的,猜测可以三分.于是先二分给第一段路多少能量,然后用上面的方法求第二段路的最短时间.注意剩余 ...

  5. 洛谷模拟NOIP考试反思

    洛谷模拟NOIP考试反思 想法 考了这么简单的试qwq然而依然emmmmmm成绩不好 虽然本次难度应该是大于正常PJ难度的但还是很不理想,离预估分数差很多qwq 于是就有了本反思嘤嘤嘤 比赛链接 原比 ...

  6. [洛谷日报第62期]Splay简易教程 (转载)

    本文发布于洛谷日报,特约作者:tiger0132 原地址 分割线下为copy的内容 [洛谷日报第62期]Splay简易教程 洛谷科技 18-10-0223:31 简介 二叉排序树(Binary Sor ...

  7. 洛谷P4689 [Ynoi2016]这是我自己的发明(莫队,树的dfn序,map,容斥原理)

    洛谷题目传送门 具体思路看别的题解吧.这里只提两个可能对常数和代码长度有优化的处理方法. I 把一个询问拆成\(9\)个甚至\(16\)个莫队询问实在是有点珂怕. 发现询问的一边要么是一个区间,要么是 ...

  8. 洛谷P4581 [BJOI2014]想法(玄学算法,拓扑排序)

    洛谷题目传送门 萝卜大毒瘤 题意可以简化成这样:给一个DAG,求每个点能够从多少个入度为\(0\)的点到达(记为\(k\)). 一个随机做法:给每个入度为\(0\)的点随机一个权值,在DAG上求出每个 ...

  9. 洛谷P4891 序列(势能线段树)

    洛谷题目传送门 闲话 考场上一眼看出这是个毒瘤线段树准备杠题,发现实在太难调了,被各路神犇虐哭qwq 考后看到各种优雅的暴力AC......宝宝心里苦qwq 思路分析 题面里面是一堆乱七八糟的限制和性 ...

随机推荐

  1. 关于Django中,实现序列化的几种不同方法

    前言 关于序列化操作,就是将一个可迭代的数据结构,通过便利的方式进行我们所需要的操作. 今天历来归纳一下,Django中的几种不同得分方法,已经Django-restframework提供的方法 创建 ...

  2. 九度教程第22题——今年暑假不AC(看尽量多的电视节目)

    #define _CRT_SECURE_NO_DEPRECATE #include <stdio.h> #include <algorithm> using namespace ...

  3. JavaEE JDBC 事务

    JDBC 事务 @author ixenos 事务 1.概念:我们将一组语句构建成一个事务(trans action),当所有语句顺利执行之后,事务可以被提交(commit):否则,如果其中某个语句遇 ...

  4. L2-001. 紧急救援 (Dijkstra算法打印路径)

    作为一个城市的应急救援队伍的负责人,你有一张特殊的全国地图.在地图上显示有多个分散的城市和一些连接城市的快速道路.每个城市的救援队数量和每一条连接两个城市的快速道路长度都标在地图上.当其他城市有紧急求 ...

  5. C语言不容易识别的坑

    1.重复两次定义 #include<stdio.h> #include<stdlib.h> #include<string.h> int a,b; void fun ...

  6. CodeForces 159E

    题目大意: 给定一堆带颜色和高度的魔方 用两种颜色的魔方,一种颜色接一种颜色向上拼接搭建成一个高塔,求高塔的最长高度,以及将拼接的过程中对应的编号顺序输出 多种情况成立输出任意一种即可 这里首先要对颜 ...

  7. 洛谷 P3137 [USACO16FEB]圆形谷仓Circular Barn_Silver

    P3137 [USACO16FEB]圆形谷仓Circular Barn_Silver 题目描述 Being a fan of contemporary architecture, Farmer Joh ...

  8. JSP基础教程:tutorialspoint-jsp

    来自turorialspoint的JSP基础教程(英文),官网:https://www.tutorialspoint.com/jsp/index.htm 这个教程在国内已经被翻译成中文(不过是属于机器 ...

  9. 【CV论文阅读】生成式对抗网络GAN

    生成式对抗网络GAN 1.  基本GAN 在论文<Generative Adversarial Nets>提出的GAN是最原始的框架,可以看成极大极小博弈的过程,因此称为“对抗网络”.一般 ...

  10. hdu 2544 最短路(SPFA算法)

    本题链接:点击打开链接 本题大意: 首先输入一个n,m.代表有n个点.m条边.然后输入m条边,每条边输入两个点及边权.1为起点,n为终点.输入两个零表示结束. 解题思路: 本题能够使用SPFA算法来做 ...