package Spark_MLlib

import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.classification.{DecisionTreeClassificationModel, DecisionTreeClassifier}
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.ml.feature.{IndexToString, StringIndexer, VectorIndexer}
import org.apache.spark.ml.linalg.{Vector, Vectors}
import org.apache.spark.mllib.tree.DecisionTree
import org.apache.spark.sql.SparkSession /**
* Created by soyo on 17-11-5.
*/
case class data_schemas(features:Vector,label:String)
object 决策树 {
val spark=SparkSession.builder().master("local").appName("决策树").getOrCreate()
import spark.implicits._
def main(args: Array[String]): Unit = { val source_DF=spark.sparkContext.textFile("file:///home/soyo/桌面/spark编程测试数据/soyo2.txt")
.map(_.split(",")).map(x=>data_schemas(Vectors.dense(x().toDouble,x().toDouble,x().toDouble,x().toDouble),x())).toDF()
source_DF.createOrReplaceTempView("decisonTree")
val DF=spark.sql("select * from decisonTree")
DF.show()
//分别获取标签列和特征列,进行索引和重命名(索引的目的是将字符串label数值化方便机器学习算法学习)
val lableIndexer=new StringIndexer().setInputCol("label").setOutputCol("indexedLabel").fit(DF)
val featureIndexer= new VectorIndexer().setInputCol("features").setOutputCol("indexedFeatures").setMaxCategories().fit(DF)
val labelConverter= new IndexToString().setInputCol("prediction").setOutputCol("predictedLabel").setLabels(lableIndexer.labels)
// 训练数据和测试数据
val Array(trainData,testData)=DF.randomSplit(Array(0.7,0.3))
val decisionTreeClassifier=new DecisionTreeClassifier().setLabelCol("indexedLabel").setFeaturesCol("indexedFeatures")
//构建机器学习工作流
val dt_pipeline=new Pipeline().setStages(Array(lableIndexer,featureIndexer,decisionTreeClassifier,labelConverter))
val dt_model=dt_pipeline.fit(trainData)
//进行预测
val dtprediction=dt_model.transform(testData)
dtprediction.show()
//评估决策树模型
val evaluatorClassifier=new MulticlassClassificationEvaluator().setLabelCol("indexedLabel").setPredictionCol("prediction").setMetricName("accuracy")
val accuracy=evaluatorClassifier.evaluate(dtprediction)
println("准确率为: "+accuracy)
val error=-accuracy
println("错误率为: "+error)
val treeModelClassifier=dt_model.stages().asInstanceOf[DecisionTreeClassificationModel]
val schema_DecisionTree=treeModelClassifier.toDebugString
println("决策树的模型结构为: "+schema_DecisionTree) }
}

结果为:

+-----------------+------+
|         features| label|
+-----------------+------+
|[5.1,3.5,1.4,0.2]|hadoop|
|[4.9,3.0,1.4,0.2]|hadoop|
|[4.7,3.2,1.3,0.2]|hadoop|
|[4.6,3.1,1.5,0.2]|hadoop|
|[5.0,3.6,1.4,0.2]|hadoop|
|[5.4,3.9,1.7,0.4]|hadoop|
|[4.6,3.4,1.4,0.3]|hadoop|
|[5.0,3.4,1.5,0.2]|hadoop|
|[4.4,2.9,1.4,0.2]|hadoop|
|[4.9,3.1,1.5,0.1]|hadoop|
|[5.4,3.7,1.5,0.2]|hadoop|
|[4.8,3.4,1.6,0.2]|hadoop|
|[4.8,3.0,1.4,0.1]|hadoop|
|[4.3,3.0,1.1,0.1]|hadoop|
|[5.8,4.0,1.2,0.2]|hadoop|
|[5.7,4.4,1.5,0.4]|hadoop|
|[5.4,3.9,1.3,0.4]|hadoop|
|[5.1,3.5,1.4,0.3]|hadoop|
|[5.7,3.8,1.7,0.3]|hadoop|
|[5.1,3.8,1.5,0.3]|hadoop|
+-----------------+------+
only showing top 20 rows

+-----------------+------+------------+-----------------+--------------+-------------+----------+--------------+
|         features| label|indexedLabel|  indexedFeatures| rawPrediction|  probability|prediction|predictedLabel|
+-----------------+------+------------+-----------------+--------------+-------------+----------+--------------+
|[4.4,3.0,1.3,0.2]|hadoop|         1.0|[4.4,3.0,1.3,0.2]|[0.0,36.0,0.0]|[0.0,1.0,0.0]|       1.0|        hadoop|
|[4.6,3.4,1.4,0.3]|hadoop|         1.0|[4.6,3.4,1.4,0.3]|[0.0,36.0,0.0]|[0.0,1.0,0.0]|       1.0|        hadoop|
|[4.6,3.6,1.0,0.2]|hadoop|         1.0|[4.6,3.6,1.0,0.2]|[0.0,36.0,0.0]|[0.0,1.0,0.0]|       1.0|        hadoop|
|[4.9,2.4,3.3,1.0]| spark|         0.0|[4.9,2.4,3.3,1.0]| [0.0,0.0,1.0]|[0.0,0.0,1.0]|       2.0|         Scala|
|[5.0,2.0,3.5,1.0]| spark|         0.0|[5.0,2.0,3.5,1.0]| [1.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[5.0,2.3,3.3,1.0]| spark|         0.0|[5.0,2.3,3.3,1.0]|[29.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[5.0,3.2,1.2,0.2]|hadoop|         1.0|[5.0,3.2,1.2,0.2]|[0.0,36.0,0.0]|[0.0,1.0,0.0]|       1.0|        hadoop|
|[5.0,3.3,1.4,0.2]|hadoop|         1.0|[5.0,3.3,1.4,0.2]|[0.0,36.0,0.0]|[0.0,1.0,0.0]|       1.0|        hadoop|
|[5.0,3.4,1.6,0.4]|hadoop|         1.0|[5.0,3.4,1.6,0.4]|[0.0,36.0,0.0]|[0.0,1.0,0.0]|       1.0|        hadoop|
|[5.0,3.6,1.4,0.2]|hadoop|         1.0|[5.0,3.6,1.4,0.2]|[0.0,36.0,0.0]|[0.0,1.0,0.0]|       1.0|        hadoop|
|[5.1,3.5,1.4,0.2]|hadoop|         1.0|[5.1,3.5,1.4,0.2]|[0.0,36.0,0.0]|[0.0,1.0,0.0]|       1.0|        hadoop|
|[5.1,3.7,1.5,0.4]|hadoop|         1.0|[5.1,3.7,1.5,0.4]|[0.0,36.0,0.0]|[0.0,1.0,0.0]|       1.0|        hadoop|
|[5.2,3.4,1.4,0.2]|hadoop|         1.0|[5.2,3.4,1.4,0.2]|[0.0,36.0,0.0]|[0.0,1.0,0.0]|       1.0|        hadoop|
|[5.2,4.1,1.5,0.1]|hadoop|         1.0|[5.2,4.1,1.5,0.1]|[0.0,36.0,0.0]|[0.0,1.0,0.0]|       1.0|        hadoop|
|[5.4,3.0,4.5,1.5]| spark|         0.0|[5.4,3.0,4.5,1.5]|[29.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[5.4,3.9,1.7,0.4]|hadoop|         1.0|[5.4,3.9,1.7,0.4]|[0.0,36.0,0.0]|[0.0,1.0,0.0]|       1.0|        hadoop|
|[5.5,2.4,3.7,1.0]| spark|         0.0|[5.5,2.4,3.7,1.0]|[29.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[5.5,2.4,3.8,1.1]| spark|         0.0|[5.5,2.4,3.8,1.1]|[29.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[5.5,2.5,4.0,1.3]| spark|         0.0|[5.5,2.5,4.0,1.3]|[29.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[5.5,2.6,4.4,1.2]| spark|         0.0|[5.5,2.6,4.4,1.2]|[29.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[5.5,4.2,1.4,0.2]|hadoop|         1.0|[5.5,4.2,1.4,0.2]|[0.0,36.0,0.0]|[0.0,1.0,0.0]|       1.0|        hadoop|
|[5.6,2.5,3.9,1.1]| spark|         0.0|[5.6,2.5,3.9,1.1]|[29.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[5.6,2.7,4.2,1.3]| spark|         0.0|[5.6,2.7,4.2,1.3]|[29.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[5.6,3.0,4.1,1.3]| spark|         0.0|[5.6,3.0,4.1,1.3]|[29.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[5.7,2.6,3.5,1.0]| spark|         0.0|[5.7,2.6,3.5,1.0]|[29.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[5.8,2.6,4.0,1.2]| spark|         0.0|[5.8,2.6,4.0,1.2]|[29.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[5.8,4.0,1.2,0.2]|hadoop|         1.0|[5.8,4.0,1.2,0.2]|[0.0,36.0,0.0]|[0.0,1.0,0.0]|       1.0|        hadoop|
|[6.1,2.6,5.6,1.4]| Scala|         2.0|[6.1,2.6,5.6,1.4]|[29.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[6.2,2.2,4.5,1.5]| spark|         0.0|[6.2,2.2,4.5,1.5]| [0.0,0.0,1.0]|[0.0,0.0,1.0]|       2.0|         Scala|
|[6.2,3.4,5.4,2.3]| Scala|         2.0|[6.2,3.4,5.4,2.3]|[0.0,0.0,31.0]|[0.0,0.0,1.0]|       2.0|         Scala|
|[6.3,2.5,5.0,1.9]| Scala|         2.0|[6.3,2.5,5.0,1.9]|[0.0,0.0,31.0]|[0.0,0.0,1.0]|       2.0|         Scala|
|[6.3,2.8,5.1,1.5]| Scala|         2.0|[6.3,2.8,5.1,1.5]|[29.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[6.4,2.8,5.6,2.1]| Scala|         2.0|[6.4,2.8,5.6,2.1]|[0.0,0.0,31.0]|[0.0,0.0,1.0]|       2.0|         Scala|
|[6.4,2.8,5.6,2.2]| Scala|         2.0|[6.4,2.8,5.6,2.2]|[0.0,0.0,31.0]|[0.0,0.0,1.0]|       2.0|         Scala|
|[6.4,3.2,4.5,1.5]| spark|         0.0|[6.4,3.2,4.5,1.5]|[29.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[6.4,3.2,5.3,2.3]| Scala|         2.0|[6.4,3.2,5.3,2.3]|[0.0,0.0,31.0]|[0.0,0.0,1.0]|       2.0|         Scala|
|[6.5,2.8,4.6,1.5]| spark|         0.0|[6.5,2.8,4.6,1.5]|[29.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[6.6,2.9,4.6,1.3]| spark|         0.0|[6.6,2.9,4.6,1.3]|[29.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[6.6,3.0,4.4,1.4]| spark|         0.0|[6.6,3.0,4.4,1.4]|[29.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[6.8,3.2,5.9,2.3]| Scala|         2.0|[6.8,3.2,5.9,2.3]|[0.0,0.0,31.0]|[0.0,0.0,1.0]|       2.0|         Scala|
|[6.9,3.1,4.9,1.5]| spark|         0.0|[6.9,3.1,4.9,1.5]|[29.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[6.9,3.2,5.7,2.3]| Scala|         2.0|[6.9,3.2,5.7,2.3]|[0.0,0.0,31.0]|[0.0,0.0,1.0]|       2.0|         Scala|
|[7.2,3.0,5.8,1.6]| Scala|         2.0|[7.2,3.0,5.8,1.6]|[29.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[7.2,3.2,6.0,1.8]| Scala|         2.0|[7.2,3.2,6.0,1.8]|[0.0,0.0,31.0]|[0.0,0.0,1.0]|       2.0|         Scala|
|[7.6,3.0,6.6,2.1]| Scala|         2.0|[7.6,3.0,6.6,2.1]|[0.0,0.0,31.0]|[0.0,0.0,1.0]|       2.0|         Scala|
|[7.7,3.0,6.1,2.3]| Scala|         2.0|[7.7,3.0,6.1,2.3]|[0.0,0.0,31.0]|[0.0,0.0,1.0]|       2.0|         Scala|
|[7.7,3.8,6.7,2.2]| Scala|         2.0|[7.7,3.8,6.7,2.2]|[0.0,0.0,31.0]|[0.0,0.0,1.0]|       2.0|         Scala|
|[7.9,3.8,6.4,2.0]| Scala|         2.0|[7.9,3.8,6.4,2.0]|[0.0,0.0,31.0]|[0.0,0.0,1.0]|       2.0|         Scala|
+-----------------+------+------------+-----------------+--------------+-------------+----------+--------------+

准确率为: 0.8958333333333334
错误率为: 0.10416666666666663
决策树的结构为: DecisionTreeClassificationModel (uid=dtc_218264842cd2) of depth 5 with 15 nodes
  If (feature 2 <= 1.9)
   Predict: 1.0
  Else (feature 2 > 1.9)
   If (feature 3 <= 1.7)
    If (feature 0 <= 4.9)
     Predict: 2.0
    Else (feature 0 > 4.9)
     If (feature 1 <= 2.2)
      If (feature 2 <= 4.0)
       Predict: 0.0
      Else (feature 2 > 4.0)
       Predict: 2.0
     Else (feature 1 > 2.2)
      Predict: 0.0
   Else (feature 3 > 1.7)
    If (feature 2 <= 4.8)
     If (feature 0 <= 5.9)
      Predict: 0.0
     Else (feature 0 > 5.9)
      Predict: 2.0
    Else (feature 2 > 4.8)
     Predict: 2.0

Spark 决策树--分类模型的更多相关文章

  1. Spark 决策树--回归模型

    package Spark_MLlib import org.apache.spark.ml.Pipeline import org.apache.spark.ml.evaluation.Regres ...

  2. spark 决策树分类算法demo

    分类(Classification) 下面的例子说明了怎样导入LIBSVM 数据文件,解析成RDD[LabeledPoint],然后使用决策树进行分类.GINI不纯度作为不纯度衡量标准并且树的最大深度 ...

  3. R语言决策树分类模型

    rm(list=ls()) gc() memory.limit(4000) library(corrplot) library(rpart) data_health<-read.csv(&quo ...

  4. Spark学习笔记——构建分类模型

    Spark中常见的三种分类模型:线性模型.决策树和朴素贝叶斯模型. 线性模型,简单而且相对容易扩展到非常大的数据集:线性模型又可以分成:1.逻辑回归:2.线性支持向量机 决策树是一个强大的非线性技术, ...

  5. Spark机器学习4·分类模型(spark-shell)

    线性模型 逻辑回归--逻辑损失(logistic loss) 线性支持向量机(Support Vector Machine, SVM)--合页损失(hinge loss) 朴素贝叶斯(Naive Ba ...

  6. 笔记︱风控分类模型种类(决策、排序)比较与模型评估体系(ROC/gini/KS/lift)

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 本笔记源于CDA-DSC课程,由常国珍老师主讲 ...

  7. 初识spark的MLP模型

    初识Spark的MLP模型 1. MLP介绍 Multi-layer Perceptron(MLP),即多层感知器,是一个前馈式的.具有监督的人工神经网络结构.通过多层感知器可包含多个隐藏层,实现对非 ...

  8. sklearn CART决策树分类

    sklearn CART决策树分类 决策树是一种常用的机器学习方法,可以用于分类和回归.同时,决策树的训练结果非常容易理解,而且对于数据预处理的要求也不是很高. 理论部分 比较经典的决策树是ID3.C ...

  9. ML(4): 决策树分类

    决策树(Decision Tree)是用于分类和预测的主要技术,它着眼于从一组无规则的事例推理出决策树表示形式的分类规则,采用自顶向下的递归方式,在决策树的内部节点进行属性值的比较,并根据不同属性判断 ...

随机推荐

  1. Spring Boot 2 (二):Spring Boot 2 尝鲜-动态 Banner

    Spring Boot 2.0 提供了很多新特性,其中就有一个小彩蛋:动态 Banner,今天我们就先拿这个来尝尝鲜. 配置依赖 使用 Spring Boot 2.0 首先需要将项目依赖包替换为刚刚发 ...

  2. C51 定时器/计数器 个人笔记

    C51的周期 结构图 两个功能寄存器 51单片机定时/计数器的工作由两个特殊功能寄存器控制.TMOD用于设置其工作方式:TCON用于控制其启动和中断申请. 工作方式寄存器TMOD 其中方式一和方式二常 ...

  3. map.keySet()获取map全部的key值

    map.keySet()获取map全部的key值   public static String getUrlWithQueryString(String url, Map<String, Str ...

  4. [luoguP2401] 不等数列

    传送门 f[i][j]表示前i个数有j个<的方案数 #include <cstdio> #define N 1001 #define p 2015 int n, k; int f[N ...

  5. Django:(4)Django和Ajax

    向服务器发送请求的途径: 1. 浏览器地址栏,默认get请求 2. form表单: get请求: post请求 3. a标签,默认get请求 4. Ajax:get请求:post请求 Ajax的特点( ...

  6. 2018/2/15 ES Beats的学习笔记

    Beats其实是几种服务的统称(你也可以把收集到的数据存储到别的数据源,不一定非要ES),这几种服务分别是: 1.PacketBeat 通过抓包的方式来监控一些服务.如:HTTP,DNS,Redis, ...

  7. Writing Code-Codeforces511C**

    http://codeforces.com/problemset/problem/544/C 完全背包 dp[i][j]表示第i行有j个bug #include<stdio.h> #inc ...

  8. Ubuntu 16.04利用SecureCRT上传/下载文件(sz/rz命令)

    说明:XShell同样也是支持的. 一.安装软件 sudo apt-get install lrzsz 二.sz下载文件用法: #下载一个文件 sz filename #下载多个文件 sz filen ...

  9. openstack setup demo Identity service

    openstack Identity service 名叫keystone.它提供了用户校验,以及服务目录查询(即列出所有的服务以及相关信息)等功能. keystone 主要包含以下几个部分 Serv ...

  10. session问题总既然(深入理解)&Token问题理解&sso单点登陆理解实现

    一.Session使http协议成为有状态协议(浏览器cookie本地这个session,服务器端也有这个session) 1.ajax前端登陆无法保存session,造成无法维持登陆状态(http本 ...