Spark 决策树--分类模型
package Spark_MLlib import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.classification.{DecisionTreeClassificationModel, DecisionTreeClassifier}
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.ml.feature.{IndexToString, StringIndexer, VectorIndexer}
import org.apache.spark.ml.linalg.{Vector, Vectors}
import org.apache.spark.mllib.tree.DecisionTree
import org.apache.spark.sql.SparkSession /**
* Created by soyo on 17-11-5.
*/
case class data_schemas(features:Vector,label:String)
object 决策树 {
val spark=SparkSession.builder().master("local").appName("决策树").getOrCreate()
import spark.implicits._
def main(args: Array[String]): Unit = { val source_DF=spark.sparkContext.textFile("file:///home/soyo/桌面/spark编程测试数据/soyo2.txt")
.map(_.split(",")).map(x=>data_schemas(Vectors.dense(x().toDouble,x().toDouble,x().toDouble,x().toDouble),x())).toDF()
source_DF.createOrReplaceTempView("decisonTree")
val DF=spark.sql("select * from decisonTree")
DF.show()
//分别获取标签列和特征列,进行索引和重命名(索引的目的是将字符串label数值化方便机器学习算法学习)
val lableIndexer=new StringIndexer().setInputCol("label").setOutputCol("indexedLabel").fit(DF)
val featureIndexer= new VectorIndexer().setInputCol("features").setOutputCol("indexedFeatures").setMaxCategories().fit(DF)
val labelConverter= new IndexToString().setInputCol("prediction").setOutputCol("predictedLabel").setLabels(lableIndexer.labels)
// 训练数据和测试数据
val Array(trainData,testData)=DF.randomSplit(Array(0.7,0.3))
val decisionTreeClassifier=new DecisionTreeClassifier().setLabelCol("indexedLabel").setFeaturesCol("indexedFeatures")
//构建机器学习工作流
val dt_pipeline=new Pipeline().setStages(Array(lableIndexer,featureIndexer,decisionTreeClassifier,labelConverter))
val dt_model=dt_pipeline.fit(trainData)
//进行预测
val dtprediction=dt_model.transform(testData)
dtprediction.show()
//评估决策树模型
val evaluatorClassifier=new MulticlassClassificationEvaluator().setLabelCol("indexedLabel").setPredictionCol("prediction").setMetricName("accuracy")
val accuracy=evaluatorClassifier.evaluate(dtprediction)
println("准确率为: "+accuracy)
val error=-accuracy
println("错误率为: "+error)
val treeModelClassifier=dt_model.stages().asInstanceOf[DecisionTreeClassificationModel]
val schema_DecisionTree=treeModelClassifier.toDebugString
println("决策树的模型结构为: "+schema_DecisionTree) }
}
结果为:
+-----------------+------+
| features| label|
+-----------------+------+
|[5.1,3.5,1.4,0.2]|hadoop|
|[4.9,3.0,1.4,0.2]|hadoop|
|[4.7,3.2,1.3,0.2]|hadoop|
|[4.6,3.1,1.5,0.2]|hadoop|
|[5.0,3.6,1.4,0.2]|hadoop|
|[5.4,3.9,1.7,0.4]|hadoop|
|[4.6,3.4,1.4,0.3]|hadoop|
|[5.0,3.4,1.5,0.2]|hadoop|
|[4.4,2.9,1.4,0.2]|hadoop|
|[4.9,3.1,1.5,0.1]|hadoop|
|[5.4,3.7,1.5,0.2]|hadoop|
|[4.8,3.4,1.6,0.2]|hadoop|
|[4.8,3.0,1.4,0.1]|hadoop|
|[4.3,3.0,1.1,0.1]|hadoop|
|[5.8,4.0,1.2,0.2]|hadoop|
|[5.7,4.4,1.5,0.4]|hadoop|
|[5.4,3.9,1.3,0.4]|hadoop|
|[5.1,3.5,1.4,0.3]|hadoop|
|[5.7,3.8,1.7,0.3]|hadoop|
|[5.1,3.8,1.5,0.3]|hadoop|
+-----------------+------+
only showing top 20 rows
+-----------------+------+------------+-----------------+--------------+-------------+----------+--------------+
| features| label|indexedLabel| indexedFeatures| rawPrediction| probability|prediction|predictedLabel|
+-----------------+------+------------+-----------------+--------------+-------------+----------+--------------+
|[4.4,3.0,1.3,0.2]|hadoop| 1.0|[4.4,3.0,1.3,0.2]|[0.0,36.0,0.0]|[0.0,1.0,0.0]| 1.0| hadoop|
|[4.6,3.4,1.4,0.3]|hadoop| 1.0|[4.6,3.4,1.4,0.3]|[0.0,36.0,0.0]|[0.0,1.0,0.0]| 1.0| hadoop|
|[4.6,3.6,1.0,0.2]|hadoop| 1.0|[4.6,3.6,1.0,0.2]|[0.0,36.0,0.0]|[0.0,1.0,0.0]| 1.0| hadoop|
|[4.9,2.4,3.3,1.0]| spark| 0.0|[4.9,2.4,3.3,1.0]| [0.0,0.0,1.0]|[0.0,0.0,1.0]| 2.0| Scala|
|[5.0,2.0,3.5,1.0]| spark| 0.0|[5.0,2.0,3.5,1.0]| [1.0,0.0,0.0]|[1.0,0.0,0.0]| 0.0| spark|
|[5.0,2.3,3.3,1.0]| spark| 0.0|[5.0,2.3,3.3,1.0]|[29.0,0.0,0.0]|[1.0,0.0,0.0]| 0.0| spark|
|[5.0,3.2,1.2,0.2]|hadoop| 1.0|[5.0,3.2,1.2,0.2]|[0.0,36.0,0.0]|[0.0,1.0,0.0]| 1.0| hadoop|
|[5.0,3.3,1.4,0.2]|hadoop| 1.0|[5.0,3.3,1.4,0.2]|[0.0,36.0,0.0]|[0.0,1.0,0.0]| 1.0| hadoop|
|[5.0,3.4,1.6,0.4]|hadoop| 1.0|[5.0,3.4,1.6,0.4]|[0.0,36.0,0.0]|[0.0,1.0,0.0]| 1.0| hadoop|
|[5.0,3.6,1.4,0.2]|hadoop| 1.0|[5.0,3.6,1.4,0.2]|[0.0,36.0,0.0]|[0.0,1.0,0.0]| 1.0| hadoop|
|[5.1,3.5,1.4,0.2]|hadoop| 1.0|[5.1,3.5,1.4,0.2]|[0.0,36.0,0.0]|[0.0,1.0,0.0]| 1.0| hadoop|
|[5.1,3.7,1.5,0.4]|hadoop| 1.0|[5.1,3.7,1.5,0.4]|[0.0,36.0,0.0]|[0.0,1.0,0.0]| 1.0| hadoop|
|[5.2,3.4,1.4,0.2]|hadoop| 1.0|[5.2,3.4,1.4,0.2]|[0.0,36.0,0.0]|[0.0,1.0,0.0]| 1.0| hadoop|
|[5.2,4.1,1.5,0.1]|hadoop| 1.0|[5.2,4.1,1.5,0.1]|[0.0,36.0,0.0]|[0.0,1.0,0.0]| 1.0| hadoop|
|[5.4,3.0,4.5,1.5]| spark| 0.0|[5.4,3.0,4.5,1.5]|[29.0,0.0,0.0]|[1.0,0.0,0.0]| 0.0| spark|
|[5.4,3.9,1.7,0.4]|hadoop| 1.0|[5.4,3.9,1.7,0.4]|[0.0,36.0,0.0]|[0.0,1.0,0.0]| 1.0| hadoop|
|[5.5,2.4,3.7,1.0]| spark| 0.0|[5.5,2.4,3.7,1.0]|[29.0,0.0,0.0]|[1.0,0.0,0.0]| 0.0| spark|
|[5.5,2.4,3.8,1.1]| spark| 0.0|[5.5,2.4,3.8,1.1]|[29.0,0.0,0.0]|[1.0,0.0,0.0]| 0.0| spark|
|[5.5,2.5,4.0,1.3]| spark| 0.0|[5.5,2.5,4.0,1.3]|[29.0,0.0,0.0]|[1.0,0.0,0.0]| 0.0| spark|
|[5.5,2.6,4.4,1.2]| spark| 0.0|[5.5,2.6,4.4,1.2]|[29.0,0.0,0.0]|[1.0,0.0,0.0]| 0.0| spark|
|[5.5,4.2,1.4,0.2]|hadoop| 1.0|[5.5,4.2,1.4,0.2]|[0.0,36.0,0.0]|[0.0,1.0,0.0]| 1.0| hadoop|
|[5.6,2.5,3.9,1.1]| spark| 0.0|[5.6,2.5,3.9,1.1]|[29.0,0.0,0.0]|[1.0,0.0,0.0]| 0.0| spark|
|[5.6,2.7,4.2,1.3]| spark| 0.0|[5.6,2.7,4.2,1.3]|[29.0,0.0,0.0]|[1.0,0.0,0.0]| 0.0| spark|
|[5.6,3.0,4.1,1.3]| spark| 0.0|[5.6,3.0,4.1,1.3]|[29.0,0.0,0.0]|[1.0,0.0,0.0]| 0.0| spark|
|[5.7,2.6,3.5,1.0]| spark| 0.0|[5.7,2.6,3.5,1.0]|[29.0,0.0,0.0]|[1.0,0.0,0.0]| 0.0| spark|
|[5.8,2.6,4.0,1.2]| spark| 0.0|[5.8,2.6,4.0,1.2]|[29.0,0.0,0.0]|[1.0,0.0,0.0]| 0.0| spark|
|[5.8,4.0,1.2,0.2]|hadoop| 1.0|[5.8,4.0,1.2,0.2]|[0.0,36.0,0.0]|[0.0,1.0,0.0]| 1.0| hadoop|
|[6.1,2.6,5.6,1.4]| Scala| 2.0|[6.1,2.6,5.6,1.4]|[29.0,0.0,0.0]|[1.0,0.0,0.0]| 0.0| spark|
|[6.2,2.2,4.5,1.5]| spark| 0.0|[6.2,2.2,4.5,1.5]| [0.0,0.0,1.0]|[0.0,0.0,1.0]| 2.0| Scala|
|[6.2,3.4,5.4,2.3]| Scala| 2.0|[6.2,3.4,5.4,2.3]|[0.0,0.0,31.0]|[0.0,0.0,1.0]| 2.0| Scala|
|[6.3,2.5,5.0,1.9]| Scala| 2.0|[6.3,2.5,5.0,1.9]|[0.0,0.0,31.0]|[0.0,0.0,1.0]| 2.0| Scala|
|[6.3,2.8,5.1,1.5]| Scala| 2.0|[6.3,2.8,5.1,1.5]|[29.0,0.0,0.0]|[1.0,0.0,0.0]| 0.0| spark|
|[6.4,2.8,5.6,2.1]| Scala| 2.0|[6.4,2.8,5.6,2.1]|[0.0,0.0,31.0]|[0.0,0.0,1.0]| 2.0| Scala|
|[6.4,2.8,5.6,2.2]| Scala| 2.0|[6.4,2.8,5.6,2.2]|[0.0,0.0,31.0]|[0.0,0.0,1.0]| 2.0| Scala|
|[6.4,3.2,4.5,1.5]| spark| 0.0|[6.4,3.2,4.5,1.5]|[29.0,0.0,0.0]|[1.0,0.0,0.0]| 0.0| spark|
|[6.4,3.2,5.3,2.3]| Scala| 2.0|[6.4,3.2,5.3,2.3]|[0.0,0.0,31.0]|[0.0,0.0,1.0]| 2.0| Scala|
|[6.5,2.8,4.6,1.5]| spark| 0.0|[6.5,2.8,4.6,1.5]|[29.0,0.0,0.0]|[1.0,0.0,0.0]| 0.0| spark|
|[6.6,2.9,4.6,1.3]| spark| 0.0|[6.6,2.9,4.6,1.3]|[29.0,0.0,0.0]|[1.0,0.0,0.0]| 0.0| spark|
|[6.6,3.0,4.4,1.4]| spark| 0.0|[6.6,3.0,4.4,1.4]|[29.0,0.0,0.0]|[1.0,0.0,0.0]| 0.0| spark|
|[6.8,3.2,5.9,2.3]| Scala| 2.0|[6.8,3.2,5.9,2.3]|[0.0,0.0,31.0]|[0.0,0.0,1.0]| 2.0| Scala|
|[6.9,3.1,4.9,1.5]| spark| 0.0|[6.9,3.1,4.9,1.5]|[29.0,0.0,0.0]|[1.0,0.0,0.0]| 0.0| spark|
|[6.9,3.2,5.7,2.3]| Scala| 2.0|[6.9,3.2,5.7,2.3]|[0.0,0.0,31.0]|[0.0,0.0,1.0]| 2.0| Scala|
|[7.2,3.0,5.8,1.6]| Scala| 2.0|[7.2,3.0,5.8,1.6]|[29.0,0.0,0.0]|[1.0,0.0,0.0]| 0.0| spark|
|[7.2,3.2,6.0,1.8]| Scala| 2.0|[7.2,3.2,6.0,1.8]|[0.0,0.0,31.0]|[0.0,0.0,1.0]| 2.0| Scala|
|[7.6,3.0,6.6,2.1]| Scala| 2.0|[7.6,3.0,6.6,2.1]|[0.0,0.0,31.0]|[0.0,0.0,1.0]| 2.0| Scala|
|[7.7,3.0,6.1,2.3]| Scala| 2.0|[7.7,3.0,6.1,2.3]|[0.0,0.0,31.0]|[0.0,0.0,1.0]| 2.0| Scala|
|[7.7,3.8,6.7,2.2]| Scala| 2.0|[7.7,3.8,6.7,2.2]|[0.0,0.0,31.0]|[0.0,0.0,1.0]| 2.0| Scala|
|[7.9,3.8,6.4,2.0]| Scala| 2.0|[7.9,3.8,6.4,2.0]|[0.0,0.0,31.0]|[0.0,0.0,1.0]| 2.0| Scala|
+-----------------+------+------------+-----------------+--------------+-------------+----------+--------------+
准确率为: 0.8958333333333334
错误率为: 0.10416666666666663
决策树的结构为: DecisionTreeClassificationModel (uid=dtc_218264842cd2) of depth 5 with 15 nodes
If (feature 2 <= 1.9)
Predict: 1.0
Else (feature 2 > 1.9)
If (feature 3 <= 1.7)
If (feature 0 <= 4.9)
Predict: 2.0
Else (feature 0 > 4.9)
If (feature 1 <= 2.2)
If (feature 2 <= 4.0)
Predict: 0.0
Else (feature 2 > 4.0)
Predict: 2.0
Else (feature 1 > 2.2)
Predict: 0.0
Else (feature 3 > 1.7)
If (feature 2 <= 4.8)
If (feature 0 <= 5.9)
Predict: 0.0
Else (feature 0 > 5.9)
Predict: 2.0
Else (feature 2 > 4.8)
Predict: 2.0
Spark 决策树--分类模型的更多相关文章
- Spark 决策树--回归模型
package Spark_MLlib import org.apache.spark.ml.Pipeline import org.apache.spark.ml.evaluation.Regres ...
- spark 决策树分类算法demo
分类(Classification) 下面的例子说明了怎样导入LIBSVM 数据文件,解析成RDD[LabeledPoint],然后使用决策树进行分类.GINI不纯度作为不纯度衡量标准并且树的最大深度 ...
- R语言决策树分类模型
rm(list=ls()) gc() memory.limit(4000) library(corrplot) library(rpart) data_health<-read.csv(&quo ...
- Spark学习笔记——构建分类模型
Spark中常见的三种分类模型:线性模型.决策树和朴素贝叶斯模型. 线性模型,简单而且相对容易扩展到非常大的数据集:线性模型又可以分成:1.逻辑回归:2.线性支持向量机 决策树是一个强大的非线性技术, ...
- Spark机器学习4·分类模型(spark-shell)
线性模型 逻辑回归--逻辑损失(logistic loss) 线性支持向量机(Support Vector Machine, SVM)--合页损失(hinge loss) 朴素贝叶斯(Naive Ba ...
- 笔记︱风控分类模型种类(决策、排序)比较与模型评估体系(ROC/gini/KS/lift)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 本笔记源于CDA-DSC课程,由常国珍老师主讲 ...
- 初识spark的MLP模型
初识Spark的MLP模型 1. MLP介绍 Multi-layer Perceptron(MLP),即多层感知器,是一个前馈式的.具有监督的人工神经网络结构.通过多层感知器可包含多个隐藏层,实现对非 ...
- sklearn CART决策树分类
sklearn CART决策树分类 决策树是一种常用的机器学习方法,可以用于分类和回归.同时,决策树的训练结果非常容易理解,而且对于数据预处理的要求也不是很高. 理论部分 比较经典的决策树是ID3.C ...
- ML(4): 决策树分类
决策树(Decision Tree)是用于分类和预测的主要技术,它着眼于从一组无规则的事例推理出决策树表示形式的分类规则,采用自顶向下的递归方式,在决策树的内部节点进行属性值的比较,并根据不同属性判断 ...
随机推荐
- LeetCode(48)Rotate Image
题目 You are given an n x n 2D matrix representing an image. Rotate the image by 90 degrees (clockwise ...
- C#上位机开发(四)—— SerialAssistant功能完善
上一篇中我们完成了一个串口助手的雏形,实现了基本发送和接收字符串功能,并将打开/关闭串口进行了异常处理,这篇就来按照流程,逐步将功能完善: 1.构思功能 首先是接收部分,要添加一个“清空接收”的按钮来 ...
- shit IE & no table `border-collapse: collapse;`
shit IE no table border-collapse: collapse; /* IE & shit table & border-collapse: collapse; ...
- HDU 3537 Mock Turtles型翻硬币游戏
题目大意: 每次可以翻1个或者2个或者3个硬币,但要保证最右边的那个硬币是正面的,直到不能操作为输,这题目还有说因为主人公感情混乱可能描述不清会有重复的硬币说出,所以要去重 这是一个Mock Turt ...
- [luoguP1972] [SDOI2009]HH的项链(莫队 || 树状数组 || 主席树)
传送门 莫队基础题,适合我这种初学者. 莫队是离线算法,通常不带修改,时间复杂度为 O(n√n) 我们要先保证通过 [ l , r ] 求得 [ l , r + 1 ] , [ l , r - 1 ] ...
- bzoj4504 k个串 kstring 可持久化线段树 (标记永久化)
[fjwc2015]k个串 kstring [题目描述] 兔子们在玩k个串的游戏.首先,它们拿出了一个长度为n的数字序列,选出其中的一个连续子串,然后统计其子串中所有数字之和(注意这里重复出现的数字只 ...
- Linux下汇编语言学习笔记13 ---
这是17年暑假学习Linux汇编语言的笔记记录,参考书目为清华大学出版社 Jeff Duntemann著 梁晓辉译<汇编语言基于Linux环境>的书,喜欢看原版书的同学可以看<Ass ...
- 2017-10-01-afternoon
T1 一道图论好题(graph) Time Limit:1000ms Memory Limit:128MB 题目描述 LYK有一张无向图G={V,E},这张无向图有n个点m条边组成.并且这是一张带 ...
- 动态替换logback FileAppender/RollingFileAppender 配置- Programmatically configure logback FileAppender/RollingBackAppender
一.本文实际解决的问题 如何在代码中修改logback的RollingFileAppender配置(本文代码实例为修改日志文件路径) 二.针对的场景: 本文解决的问题属于一个大需求的一部分,需求为:需 ...
- GNS3模拟的硬件
Hardware emulated by GNS3 Cisco 1700 Series 1700s have one or more interfaces on the motherboard, 2 ...