package Spark_MLlib

import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.classification.{DecisionTreeClassificationModel, DecisionTreeClassifier}
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.ml.feature.{IndexToString, StringIndexer, VectorIndexer}
import org.apache.spark.ml.linalg.{Vector, Vectors}
import org.apache.spark.mllib.tree.DecisionTree
import org.apache.spark.sql.SparkSession /**
* Created by soyo on 17-11-5.
*/
case class data_schemas(features:Vector,label:String)
object 决策树 {
val spark=SparkSession.builder().master("local").appName("决策树").getOrCreate()
import spark.implicits._
def main(args: Array[String]): Unit = { val source_DF=spark.sparkContext.textFile("file:///home/soyo/桌面/spark编程测试数据/soyo2.txt")
.map(_.split(",")).map(x=>data_schemas(Vectors.dense(x().toDouble,x().toDouble,x().toDouble,x().toDouble),x())).toDF()
source_DF.createOrReplaceTempView("decisonTree")
val DF=spark.sql("select * from decisonTree")
DF.show()
//分别获取标签列和特征列,进行索引和重命名(索引的目的是将字符串label数值化方便机器学习算法学习)
val lableIndexer=new StringIndexer().setInputCol("label").setOutputCol("indexedLabel").fit(DF)
val featureIndexer= new VectorIndexer().setInputCol("features").setOutputCol("indexedFeatures").setMaxCategories().fit(DF)
val labelConverter= new IndexToString().setInputCol("prediction").setOutputCol("predictedLabel").setLabels(lableIndexer.labels)
// 训练数据和测试数据
val Array(trainData,testData)=DF.randomSplit(Array(0.7,0.3))
val decisionTreeClassifier=new DecisionTreeClassifier().setLabelCol("indexedLabel").setFeaturesCol("indexedFeatures")
//构建机器学习工作流
val dt_pipeline=new Pipeline().setStages(Array(lableIndexer,featureIndexer,decisionTreeClassifier,labelConverter))
val dt_model=dt_pipeline.fit(trainData)
//进行预测
val dtprediction=dt_model.transform(testData)
dtprediction.show()
//评估决策树模型
val evaluatorClassifier=new MulticlassClassificationEvaluator().setLabelCol("indexedLabel").setPredictionCol("prediction").setMetricName("accuracy")
val accuracy=evaluatorClassifier.evaluate(dtprediction)
println("准确率为: "+accuracy)
val error=-accuracy
println("错误率为: "+error)
val treeModelClassifier=dt_model.stages().asInstanceOf[DecisionTreeClassificationModel]
val schema_DecisionTree=treeModelClassifier.toDebugString
println("决策树的模型结构为: "+schema_DecisionTree) }
}

结果为:

+-----------------+------+
|         features| label|
+-----------------+------+
|[5.1,3.5,1.4,0.2]|hadoop|
|[4.9,3.0,1.4,0.2]|hadoop|
|[4.7,3.2,1.3,0.2]|hadoop|
|[4.6,3.1,1.5,0.2]|hadoop|
|[5.0,3.6,1.4,0.2]|hadoop|
|[5.4,3.9,1.7,0.4]|hadoop|
|[4.6,3.4,1.4,0.3]|hadoop|
|[5.0,3.4,1.5,0.2]|hadoop|
|[4.4,2.9,1.4,0.2]|hadoop|
|[4.9,3.1,1.5,0.1]|hadoop|
|[5.4,3.7,1.5,0.2]|hadoop|
|[4.8,3.4,1.6,0.2]|hadoop|
|[4.8,3.0,1.4,0.1]|hadoop|
|[4.3,3.0,1.1,0.1]|hadoop|
|[5.8,4.0,1.2,0.2]|hadoop|
|[5.7,4.4,1.5,0.4]|hadoop|
|[5.4,3.9,1.3,0.4]|hadoop|
|[5.1,3.5,1.4,0.3]|hadoop|
|[5.7,3.8,1.7,0.3]|hadoop|
|[5.1,3.8,1.5,0.3]|hadoop|
+-----------------+------+
only showing top 20 rows

+-----------------+------+------------+-----------------+--------------+-------------+----------+--------------+
|         features| label|indexedLabel|  indexedFeatures| rawPrediction|  probability|prediction|predictedLabel|
+-----------------+------+------------+-----------------+--------------+-------------+----------+--------------+
|[4.4,3.0,1.3,0.2]|hadoop|         1.0|[4.4,3.0,1.3,0.2]|[0.0,36.0,0.0]|[0.0,1.0,0.0]|       1.0|        hadoop|
|[4.6,3.4,1.4,0.3]|hadoop|         1.0|[4.6,3.4,1.4,0.3]|[0.0,36.0,0.0]|[0.0,1.0,0.0]|       1.0|        hadoop|
|[4.6,3.6,1.0,0.2]|hadoop|         1.0|[4.6,3.6,1.0,0.2]|[0.0,36.0,0.0]|[0.0,1.0,0.0]|       1.0|        hadoop|
|[4.9,2.4,3.3,1.0]| spark|         0.0|[4.9,2.4,3.3,1.0]| [0.0,0.0,1.0]|[0.0,0.0,1.0]|       2.0|         Scala|
|[5.0,2.0,3.5,1.0]| spark|         0.0|[5.0,2.0,3.5,1.0]| [1.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[5.0,2.3,3.3,1.0]| spark|         0.0|[5.0,2.3,3.3,1.0]|[29.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[5.0,3.2,1.2,0.2]|hadoop|         1.0|[5.0,3.2,1.2,0.2]|[0.0,36.0,0.0]|[0.0,1.0,0.0]|       1.0|        hadoop|
|[5.0,3.3,1.4,0.2]|hadoop|         1.0|[5.0,3.3,1.4,0.2]|[0.0,36.0,0.0]|[0.0,1.0,0.0]|       1.0|        hadoop|
|[5.0,3.4,1.6,0.4]|hadoop|         1.0|[5.0,3.4,1.6,0.4]|[0.0,36.0,0.0]|[0.0,1.0,0.0]|       1.0|        hadoop|
|[5.0,3.6,1.4,0.2]|hadoop|         1.0|[5.0,3.6,1.4,0.2]|[0.0,36.0,0.0]|[0.0,1.0,0.0]|       1.0|        hadoop|
|[5.1,3.5,1.4,0.2]|hadoop|         1.0|[5.1,3.5,1.4,0.2]|[0.0,36.0,0.0]|[0.0,1.0,0.0]|       1.0|        hadoop|
|[5.1,3.7,1.5,0.4]|hadoop|         1.0|[5.1,3.7,1.5,0.4]|[0.0,36.0,0.0]|[0.0,1.0,0.0]|       1.0|        hadoop|
|[5.2,3.4,1.4,0.2]|hadoop|         1.0|[5.2,3.4,1.4,0.2]|[0.0,36.0,0.0]|[0.0,1.0,0.0]|       1.0|        hadoop|
|[5.2,4.1,1.5,0.1]|hadoop|         1.0|[5.2,4.1,1.5,0.1]|[0.0,36.0,0.0]|[0.0,1.0,0.0]|       1.0|        hadoop|
|[5.4,3.0,4.5,1.5]| spark|         0.0|[5.4,3.0,4.5,1.5]|[29.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[5.4,3.9,1.7,0.4]|hadoop|         1.0|[5.4,3.9,1.7,0.4]|[0.0,36.0,0.0]|[0.0,1.0,0.0]|       1.0|        hadoop|
|[5.5,2.4,3.7,1.0]| spark|         0.0|[5.5,2.4,3.7,1.0]|[29.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[5.5,2.4,3.8,1.1]| spark|         0.0|[5.5,2.4,3.8,1.1]|[29.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[5.5,2.5,4.0,1.3]| spark|         0.0|[5.5,2.5,4.0,1.3]|[29.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[5.5,2.6,4.4,1.2]| spark|         0.0|[5.5,2.6,4.4,1.2]|[29.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[5.5,4.2,1.4,0.2]|hadoop|         1.0|[5.5,4.2,1.4,0.2]|[0.0,36.0,0.0]|[0.0,1.0,0.0]|       1.0|        hadoop|
|[5.6,2.5,3.9,1.1]| spark|         0.0|[5.6,2.5,3.9,1.1]|[29.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[5.6,2.7,4.2,1.3]| spark|         0.0|[5.6,2.7,4.2,1.3]|[29.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[5.6,3.0,4.1,1.3]| spark|         0.0|[5.6,3.0,4.1,1.3]|[29.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[5.7,2.6,3.5,1.0]| spark|         0.0|[5.7,2.6,3.5,1.0]|[29.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[5.8,2.6,4.0,1.2]| spark|         0.0|[5.8,2.6,4.0,1.2]|[29.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[5.8,4.0,1.2,0.2]|hadoop|         1.0|[5.8,4.0,1.2,0.2]|[0.0,36.0,0.0]|[0.0,1.0,0.0]|       1.0|        hadoop|
|[6.1,2.6,5.6,1.4]| Scala|         2.0|[6.1,2.6,5.6,1.4]|[29.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[6.2,2.2,4.5,1.5]| spark|         0.0|[6.2,2.2,4.5,1.5]| [0.0,0.0,1.0]|[0.0,0.0,1.0]|       2.0|         Scala|
|[6.2,3.4,5.4,2.3]| Scala|         2.0|[6.2,3.4,5.4,2.3]|[0.0,0.0,31.0]|[0.0,0.0,1.0]|       2.0|         Scala|
|[6.3,2.5,5.0,1.9]| Scala|         2.0|[6.3,2.5,5.0,1.9]|[0.0,0.0,31.0]|[0.0,0.0,1.0]|       2.0|         Scala|
|[6.3,2.8,5.1,1.5]| Scala|         2.0|[6.3,2.8,5.1,1.5]|[29.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[6.4,2.8,5.6,2.1]| Scala|         2.0|[6.4,2.8,5.6,2.1]|[0.0,0.0,31.0]|[0.0,0.0,1.0]|       2.0|         Scala|
|[6.4,2.8,5.6,2.2]| Scala|         2.0|[6.4,2.8,5.6,2.2]|[0.0,0.0,31.0]|[0.0,0.0,1.0]|       2.0|         Scala|
|[6.4,3.2,4.5,1.5]| spark|         0.0|[6.4,3.2,4.5,1.5]|[29.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[6.4,3.2,5.3,2.3]| Scala|         2.0|[6.4,3.2,5.3,2.3]|[0.0,0.0,31.0]|[0.0,0.0,1.0]|       2.0|         Scala|
|[6.5,2.8,4.6,1.5]| spark|         0.0|[6.5,2.8,4.6,1.5]|[29.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[6.6,2.9,4.6,1.3]| spark|         0.0|[6.6,2.9,4.6,1.3]|[29.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[6.6,3.0,4.4,1.4]| spark|         0.0|[6.6,3.0,4.4,1.4]|[29.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[6.8,3.2,5.9,2.3]| Scala|         2.0|[6.8,3.2,5.9,2.3]|[0.0,0.0,31.0]|[0.0,0.0,1.0]|       2.0|         Scala|
|[6.9,3.1,4.9,1.5]| spark|         0.0|[6.9,3.1,4.9,1.5]|[29.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[6.9,3.2,5.7,2.3]| Scala|         2.0|[6.9,3.2,5.7,2.3]|[0.0,0.0,31.0]|[0.0,0.0,1.0]|       2.0|         Scala|
|[7.2,3.0,5.8,1.6]| Scala|         2.0|[7.2,3.0,5.8,1.6]|[29.0,0.0,0.0]|[1.0,0.0,0.0]|       0.0|         spark|
|[7.2,3.2,6.0,1.8]| Scala|         2.0|[7.2,3.2,6.0,1.8]|[0.0,0.0,31.0]|[0.0,0.0,1.0]|       2.0|         Scala|
|[7.6,3.0,6.6,2.1]| Scala|         2.0|[7.6,3.0,6.6,2.1]|[0.0,0.0,31.0]|[0.0,0.0,1.0]|       2.0|         Scala|
|[7.7,3.0,6.1,2.3]| Scala|         2.0|[7.7,3.0,6.1,2.3]|[0.0,0.0,31.0]|[0.0,0.0,1.0]|       2.0|         Scala|
|[7.7,3.8,6.7,2.2]| Scala|         2.0|[7.7,3.8,6.7,2.2]|[0.0,0.0,31.0]|[0.0,0.0,1.0]|       2.0|         Scala|
|[7.9,3.8,6.4,2.0]| Scala|         2.0|[7.9,3.8,6.4,2.0]|[0.0,0.0,31.0]|[0.0,0.0,1.0]|       2.0|         Scala|
+-----------------+------+------------+-----------------+--------------+-------------+----------+--------------+

准确率为: 0.8958333333333334
错误率为: 0.10416666666666663
决策树的结构为: DecisionTreeClassificationModel (uid=dtc_218264842cd2) of depth 5 with 15 nodes
  If (feature 2 <= 1.9)
   Predict: 1.0
  Else (feature 2 > 1.9)
   If (feature 3 <= 1.7)
    If (feature 0 <= 4.9)
     Predict: 2.0
    Else (feature 0 > 4.9)
     If (feature 1 <= 2.2)
      If (feature 2 <= 4.0)
       Predict: 0.0
      Else (feature 2 > 4.0)
       Predict: 2.0
     Else (feature 1 > 2.2)
      Predict: 0.0
   Else (feature 3 > 1.7)
    If (feature 2 <= 4.8)
     If (feature 0 <= 5.9)
      Predict: 0.0
     Else (feature 0 > 5.9)
      Predict: 2.0
    Else (feature 2 > 4.8)
     Predict: 2.0

Spark 决策树--分类模型的更多相关文章

  1. Spark 决策树--回归模型

    package Spark_MLlib import org.apache.spark.ml.Pipeline import org.apache.spark.ml.evaluation.Regres ...

  2. spark 决策树分类算法demo

    分类(Classification) 下面的例子说明了怎样导入LIBSVM 数据文件,解析成RDD[LabeledPoint],然后使用决策树进行分类.GINI不纯度作为不纯度衡量标准并且树的最大深度 ...

  3. R语言决策树分类模型

    rm(list=ls()) gc() memory.limit(4000) library(corrplot) library(rpart) data_health<-read.csv(&quo ...

  4. Spark学习笔记——构建分类模型

    Spark中常见的三种分类模型:线性模型.决策树和朴素贝叶斯模型. 线性模型,简单而且相对容易扩展到非常大的数据集:线性模型又可以分成:1.逻辑回归:2.线性支持向量机 决策树是一个强大的非线性技术, ...

  5. Spark机器学习4·分类模型(spark-shell)

    线性模型 逻辑回归--逻辑损失(logistic loss) 线性支持向量机(Support Vector Machine, SVM)--合页损失(hinge loss) 朴素贝叶斯(Naive Ba ...

  6. 笔记︱风控分类模型种类(决策、排序)比较与模型评估体系(ROC/gini/KS/lift)

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 本笔记源于CDA-DSC课程,由常国珍老师主讲 ...

  7. 初识spark的MLP模型

    初识Spark的MLP模型 1. MLP介绍 Multi-layer Perceptron(MLP),即多层感知器,是一个前馈式的.具有监督的人工神经网络结构.通过多层感知器可包含多个隐藏层,实现对非 ...

  8. sklearn CART决策树分类

    sklearn CART决策树分类 决策树是一种常用的机器学习方法,可以用于分类和回归.同时,决策树的训练结果非常容易理解,而且对于数据预处理的要求也不是很高. 理论部分 比较经典的决策树是ID3.C ...

  9. ML(4): 决策树分类

    决策树(Decision Tree)是用于分类和预测的主要技术,它着眼于从一组无规则的事例推理出决策树表示形式的分类规则,采用自顶向下的递归方式,在决策树的内部节点进行属性值的比较,并根据不同属性判断 ...

随机推荐

  1. 洛谷 4932 洛谷10月月赛II T1 浏览器

    [题解] x xor y的结果在二进制下有奇数个1,等价于x与y在二进制下的1的个数之和为奇数,因为x xor y减少的1的个数一定是偶数(两个数这一位都为1,xor的结果为0,减少了2个1) 那么答 ...

  2. CSDN编写技巧--CSDN中高亮显示代码

    1, 最近在编写CSDN博客的时候,有种生不如死的感觉,就是如下的现象: 除了图中圈红圈的部分,还有就是背景色是灰色,并且,关键字不高亮显示,起始正常的情况下,也会有这块区域的最上边这行. 2, 有一 ...

  3. FPGA学习笔记(六)—— 时序逻辑电路设计

    用always@(posedge clk)描述        时序逻辑电路的基础——计数器(在每个时钟的上升沿递增1) 例1.四位计数器(同步使能.异步复位) // Module Name: coun ...

  4. Nginx学习总结(4)——负载均衡session会话保持方法

    负载均衡时,为了保证同一用户session会被分配到同一台服务器上,可以使用以下方法: 1.使用cookie 将用户的session存入cookie里,当用户分配到不同的服务器时,先判断服务器是否存在 ...

  5. MySQL数据库连接不上的一种可能的解决办法

    右键单击我的电脑->管理->服务和应用程序->服务,右键停止如图所示的服务

  6. 编程数学-∑(求和符号)-Sigma

    百度百科:∑ 在数学中,我们把它作为求和符号使用. 大写Σ用于数学上的总和符号,比如:∑Pi,其中i=1,2,...,T,即为求P1 + P2 + ... + PT的和.小写σ用于统计学上的标准差.西 ...

  7. [luoguP1082] 同余方程(扩展欧几里得)

    传送门 ax≡1(mod b) 这个式子就是 a * x % b == 1 % b 相当于 a * x - b * y == 1 只有当 gcd(a,b) == 1 时才有解,也就是说 ax + by ...

  8. codeforces 363B

    #include<stdio.h> #include<string.h> #define inf 999999999 #define N 151000 int a[N],c[N ...

  9. 洛谷——P1007 独木桥

    P1007 独木桥 题目背景 战争已经进入到紧要时间.你是运输小队长,正在率领运输部队向前线运送物资.运输任务像做题一样的无聊.你希望找些刺激,于是命令你的士兵们到前方的一座独木桥上欣赏风景,而你留在 ...

  10. css3 模拟标牌震荡效果

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta http ...