题目

这可算是描述很简单的一道题了!但是不简单。

\(S\)是一个可重集合,\(S = \{a_1, a_2, \dots, a_n \}\)。
等概率随机取\(S\)的一个子集\(A = \{a_{i_1}, \dots, a_{i_m}\}\)。
计算出\(A\)中所有元素异或\(x\), 求\(x^k\)的期望。

要点

要点 1

所有异或出来的不同结果的数量是同样多的(这句话可能有点不清楚)。
我的意思是说,假如异或出来的结果有\(5\)、\(3\)、\(4\),那么结果是\(5\)的异或方案数量是等于结果是\(3\)的异或方案数量的,也是等于结果是\(4\)的异或方案数量的。

除此之外,如果
设异或结果为\(0\)的子集(包括空集)数量为\(n\),那么如果异或出来的结果有\(x\),那么一定恰好有\(n\)种方案使得异或出来的结果是\(x\)。

要点 2 \(a_i\)的大小

设其大小为\(2^m-1\),说白了就是化成二进制后有多少位。

那么\[(2^m-1)^k \leqslant answer < 2^{63}\]
即\[2^{mk} \leqslant 2^{63}\]
就是\[m \leqslant \frac {63} {k}\]

算法

算法 1

根据要点1,很容易想到高斯消元。消元后直接暴力即可,不过这个时间复杂度是 \(O(2^m)\)。只能通过\(60 \%\)的数据。

算法 2

设\(P = \lbrace a_1, a_2, \dots, a_{2^n} \rbrace\),它的元素就是\(A\)中所有元素异或,所以它的大小为\(2^n\)。

那么答案为\[\frac {\sum_{i=1}^{2^n} {{a_i}^k}} {2^n}\]

由于\(a_i\)化成二进制后位数比较少,所以用\(b_{i,j}\)表示\(a_i\)化成二进制后的第\(j\)位。

那么答案可以写成\[\frac {\sum_{i=1}^{2^n} ({{\sum_{j=0}^{m} { b_{i,j} \cdot 2^j }}})^k} {2^n}\]

现在假设\(k=2\),有:\[\frac {\sum_{i=1}^{2^n} ({{\sum_{j=0}^{m} \sum_{p=0}^{m} {} { b_{i,j} \cdot b_{i,p} \cdot 2^{j+p} }}})} {2^n}\]

也就是:\[\sum_{j=0}^{m} \sum_{p=0}^{m}( \frac {\sum_{i=1}^{2^n} { b_{i,j} \cdot b_{i,p} }} {2^n}\cdot 2^{j+p})\]

对于\(\frac {\sum_{i=1}^{2^n} { b_{i,j} \cdot b_{i,p} }} {2^n}\),是可以在\(O(n)\)的时间复杂度内算出来的!如果\(j=p\),那么这个值为第\(j\)为\(1\)的概率,如果\(j\neq p\),那么这个值为第\(j\)和第\(p\)同时为\(1\)的概率,这个用一个迭代可以算出(根据要点1,算出最终所有可能出现的异或结果,这里的异或结果是指第\(j\)位和第\(p\),只有4种结果)。

当\(k \neq 2\)时,原理一样!

这样子,我们就可以在\(O(m^k \cdot (n + (2^k)^3))\)内算出\(answer\)了。

k m 总复杂度(估算)
1 63 63
2 31 61504
3 21 4741632
4 15 207360000
5 12 8153726976

好吧,你会发现迭代的时间复杂度有点高!事实上可以利用高斯消元后的独立数进行推导同时出现\(1\)的概率。

这样的话,时间复杂度就是\(O(m^k \cdot m)\)了。

清华集训2014 day1 task1 玛里苟斯的更多相关文章

  1. 清华集训2014 day2 task1 简单回路

    题目 如题. 算法 就是刚学习的插头DP. 从前往后和从后往前分别进行一次DP. 要点 合法的括号序列只有103个 如何合并两次dp的信息 一开始犯傻了,以为当且仅当两个轮廓线的状态相同才是合法的方案 ...

  2. 清华集训2014 day1 task2 主旋律

    题目 这可算是一道非常好的关于容斥原理的题了. 算法 好吧,这题我毫无思路,直接给正解. 首先,问题的正面不容易求,那么就求反面吧: 有多少种添加边的方案,使得这个图是DAG图(这里及以下所说的DAG ...

  3. 清华集训2014 day1 task3 奇数国

    题目 题目看起来好像很难的样子!其实不然,这是最简单的一道题. 算法 首先要注意的是: \(number \cdot x + product \cdot y = 1\) ,那么我们称\(number\ ...

  4. uoj 41 【清华集训2014】矩阵变换 婚姻稳定问题

    [清华集训2014]矩阵变换 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/41 Description 给出 ...

  5. AC日记——【清华集训2014】奇数国 uoj 38

    #38. [清华集训2014]奇数国 思路: 题目中的number与product不想冲: 即为number与product互素: 所以,求phi(product)即可: 除一个数等同于在模的意义下乘 ...

  6. UOJ#46. 【清华集训2014】玄学

    传送门 分析 清华集训真的不是人做的啊嘤嘤嘤 我们可以考虑按操作时间把每个操作存进线段树里 如果现在点x正好使一个整块区间的右端点则更新代表这个区间的点 我们不难发现一个区间会因为不同的操作被分成若干 ...

  7. 清华集训2014 sum

    清华集训2014sum 求\[∑_{i=1}^{n}(-1)^{⌊i√r⌋}\] 多组询问,\(n\leq 10^9,t\leq 10^4, r\leq 10^4\). 吼题解啊 具体已经讲得很详细了 ...

  8. 【bzoj3811】【清华集训2014】玛里苟斯

    3811: 玛里苟斯 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 500  Solved: 196[Submit][Status][Discuss] ...

  9. [UOJ]#36. 【清华集训2014】玛里苟斯

    题目大意:给n个数字,求子集的异或和的k次方的期望(n<=10^5,k<=5,保证答案小于2^63) 做法:首先如果从集合中拿出a和b,把a和a xor b放回集合,子集的异或和与原来是一 ...

随机推荐

  1. Java 使用Dom4j和JFileChooser实现xml文件的自主选择路径导出

    直接来个简单的例子,大家一看便知. Document doc=DocumentHelper.createDocument();//创建document Element rootElement=doc. ...

  2. php随笔4-thinkphp 学习-ThinkPHP3.1快速入门(2)数据CURD

    ThinkPHP3.1快速入门(2)数据CURD   浏览:194739 发布日期:2012/09/05 分类:文档教程 关键字: 快速入门 CURD 上一篇中,我们了解了ThinkPHP的基础部分, ...

  3. mysql存储过程详解[转]

    1.      存储过程简介   我们常用的操作数据库语言SQL语句在执行的时候需要要先编译,然后执行,而存储过程(Stored Procedure)是一组为了完成特定功能的SQL语句集,经编译后存储 ...

  4. ASP.NET MVC5 学习笔记-1 控制器、路由、返回类型、选择器、过滤器

    [TOC] 1. Action 1.1 新建项目 新建项目->Web->Asp.net Web应用程序,选择MVC,选择添加测试. 在解决方案上右键,选择"管理NuGet程序包& ...

  5. Objective-C 程序设计第四版 二

    1,%@  是用于输出OC里面的对象.例如 NSString *str = @“ls kd kd kf ”; NSLog(@“%@“, str); 2,NSInteger不是一个对象,而是基本数据类型 ...

  6. mysql-5.6.17-winx64 免安装 配置

    [client] default_character_set=utf8 port=3306 [mysql] # 设置mysql客户端默认字符集 default_character_set=utf8 [ ...

  7. Muduo 网络编程示例之零:前言

    陈硕 (giantchen_AT_gmail)Blog.csdn.net/Solstice Muduo 全系列文章列表: http://blog.csdn.net/Solstice/category/ ...

  8. 数据结构——二叉搜索树(Binary Search Tree)

    二叉树(Binary Tree)的基础下 每个父节点下 左节点小,右节点大. 节点的插入: 若root==NULL则root=newnode 否则不断与节点值比较,较小则向左比较,较大则向右比较. 完 ...

  9. Hibernate级联操作和载入机制(二) cascade and fetch

    上一篇介绍了Hibernate持久化对象时候的级联操作.本篇介绍读取时候的级联操作. 还是用上一篇的样例.一份问卷有多个问题.可是每一个问题仅仅能属于一份问卷. 我们先看測试用例: @Test pub ...

  10. Python类的继承演示样例

    class Pet: __name = "" def __init__(self, name): self.__name = name def bark(self): return ...