题目链接: http://poj.org/problem?id=3264

思路分析:

典型的区间统计问题,要求求出某段区间中的极值,可以使用线段树求解。

在线段树结点中存储区间中的最小值与最大值;查询时使用线段树的查询

方法并稍加修改即可进行查询区间中最大与最小值的功能。

代码(线段树解法):

#include <limits>
#include <cstdio>
#include <iostream>
using namespace std; const int MAX_N = ;
const int N_VAL = + ;
struct SegTreeNode
{
int valMin, valMax;
}; SegTreeNode segTree[MAX_N];
int val[N_VAL];
int valMax, valMin; int Max(int a, int b) { return a > b ? a : b; }
int Min(int a, int b) { return a > b ? b : a; }
void Build(int root, int nbegin, int nend, int arr[])
{
if (nbegin == nend)
{
segTree[root].valMax = arr[nbegin];
segTree[root].valMin = arr[nbegin];
}
else
{
int mid = (nbegin + nend) / ; Build( * root, nbegin, mid, arr);
Build( * root + , mid + , nend, arr);
segTree[root].valMax = Max(segTree[ * root].valMax, segTree[ * root + ].valMax);
segTree[root].valMin = Min(segTree[ * root].valMin, segTree[ * root + ].valMin);
}
} void Query(int root, int nbegin, int nend, int qbegin, int qend)
{
if (nbegin > qend || nend < qbegin)
return;
if (qbegin <= nbegin && qend >= nend)
{
if (valMax < segTree[root].valMax)
valMax = segTree[root].valMax;
if (valMin > segTree[root].valMin)
valMin = segTree[root].valMin;
return;
} int mid = (nbegin + nend) / ; Query( * root, nbegin, mid, qbegin, qend);
Query( * root + , mid + , nend, qbegin, qend);
} int main()
{
int qbegin, qend;
int count = , N, Q; scanf("%d%d", &N, &Q);
while (count++ < N)
scanf("%d", &val[count]); Build(, , N, val);
while (Q--)
{
valMax = INT_MIN, valMin = INT_MAX;
scanf("%d%d", &qbegin, &qend);
Query(, , N, qbegin, qend);
printf("%d\n", valMax - valMin);
} return ;
}

代码(RMQ解法):

#include <cstdio>
#include <cmath>
#include <iostream>
using namespace std; const int MAX_L = ;
const int MAX_N = + ;
int height[MAX_N];
int max_h[MAX_N][MAX_L], min_h[MAX_N][MAX_L]; void RmqMaxInit(int n)
{
for (int j = ; j < MAX_L; ++j)
{
for (int i = ; i < n; ++i)
{
if (j == )
max_h[i][j] = height[i];
else
{
max_h[i][j] = max_h[i][j - ];
int p = i + ( << (j - ));
if (p < n)
{
if (max_h[p][j - ] > max_h[i][j])
max_h[i][j] = max_h[p][j - ];
}
}
}
}
} int RmqMaxQuery(int l, int r)
{
if (l > r)
{
int temp = l;
l = r;
r = temp;
}
int k = log(r - l + ) / log();
return max_h[l][k] > max_h[r - ( << k) + ][k] ?
max_h[l][k] : max_h[r - ( << k) + ][k];
} void RmqMinInit(int n)
{
for (int j = ; j < MAX_L; ++j)
{
for (int i = ; i < n; ++i)
{
if (j == )
min_h[i][j] = height[i];
else
{
min_h[i][j] = min_h[i][j - ];
int p = i + ( << (j - ));
if (p < n)
{
if (min_h[p][j - ] < min_h[i][j])
min_h[i][j] = min_h[p][j - ];
}
}
}
}
} int RmqMinQuery(int l, int r)
{
if (l > r)
{
int temp = l;
l = r;
r = temp;
} int k = log(r - l + ) / log();
return min_h[l][k] < min_h[r - ( << k) + ][k] ?
min_h[l][k] : min_h[r - ( << k) + ][k];
} int main()
{
int num_len, query_num; scanf("%d %d", &num_len, &query_num);
for (int i = ; i < num_len; ++i)
scanf("%d", &height[i]);
RmqMaxInit(num_len);
RmqMinInit(num_len); for (int i = ; i < query_num; ++i)
{
int l = , r = ;
int min_height = , max_height = ; scanf("%d %d", &l, &r);
max_height = RmqMaxQuery(l - , r - );
min_height = RmqMinQuery(l - , r - );
printf("%d\n", max_height - min_height);
} return ;
}

poj 3264 Balanced Lineup(线段树、RMQ)的更多相关文章

  1. POJ 3264 Balanced Lineup 线段树RMQ

    http://poj.org/problem?id=3264 题目大意: 给定N个数,还有Q个询问,求每个询问中给定的区间[a,b]中最大值和最小值之差. 思路: 依旧是线段树水题~ #include ...

  2. [POJ] 3264 Balanced Lineup [线段树]

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 34306   Accepted: 16137 ...

  3. POJ 3264 Balanced Lineup 线段树 第三题

    Balanced Lineup Description For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line ...

  4. POJ 3264 Balanced Lineup (线段树)

    Balanced Lineup For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the s ...

  5. POJ - 3264 Balanced Lineup 线段树解RMQ

    这个题目是一个典型的RMQ问题,给定一个整数序列,1~N,然后进行Q次询问,每次给定两个整数A,B,(1<=A<=B<=N),求给定的范围内,最大和最小值之差. 解法一:这个是最初的 ...

  6. 【POJ】3264 Balanced Lineup ——线段树 区间最值

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 34140   Accepted: 16044 ...

  7. poj 3264 Balanced Lineup 区间极值RMQ

    题目链接:http://poj.org/problem?id=3264 For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) alw ...

  8. Poj 3264 Balanced Lineup RMQ模板

    题目链接: Poj 3264 Balanced Lineup 题目描述: 给出一个n个数的序列,有q个查询,每次查询区间[l, r]内的最大值与最小值的绝对值. 解题思路: 很模板的RMQ模板题,在这 ...

  9. POJ 3264 Balanced Lineup【线段树区间查询求最大值和最小值】

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 53703   Accepted: 25237 ...

随机推荐

  1. Django 探索(一) HelloWorld

    一.Django怎么读 酱狗 二.Django下载 安装 下载地址 安装: tar zxvf Django-1.5.4.tar.gz python setup.py install 三.建立一个Hel ...

  2. JavaScriptの例

    Dateのオブジェクト: <html> <head> <title>Date Object Example</title> </head> ...

  3. Sublime Text3中最常用的快捷键

    ctrl+D 选词快捷键 反复按这快捷键,可以方便的向下选择相同的词~ alt + shift +2  分2屏  数字为几就是几屏 Alt + F3 可以一次性选择一个文件里面的所有相同的文本进行编辑 ...

  4. android 布局常用混淆属性

    1.如何控制某一控件在父控件中的相对位置呢? 在Android系统中提供了layout_margin,用来控制某一控件边缘相对于父控件的边距. 其中, android:layout_marginTop ...

  5. Word2Vec在Tensorflow上的版本以及与Gensim之间的运行对比

    接昨天的博客,这篇随笔将会对本人运行Word2Vec算法时在Gensim以及Tensorflow的不同版本下的运行结果对比.在运行中,参数的调节以及迭代的决定本人并没有很好的经验,所以希望在展出运行的 ...

  6. MySQL float 与decimal 各中的区别。

    想一个问题: 1/3+1/3+1/3=1.0 0.3+0.3+0.3 =0.9 想一想在小数的世界里要什么表示1/3呢!它的办法就是取一个与1/3十分接近的小数来代替:如上面例子中的0.3来代替1/3 ...

  7. php基础知识总结

    PHP 代表 PHP: Hypertext Preprocessor PHP 文件可包含文本.HTML.JavaScript代码和 PHP 代码 PHP 代码在服务器上执行,结果以纯 HTML 形式返 ...

  8. MOQ

    MOQ:(Minimum order Quantity) 最低订货数量   MOQ 即最小订购量(最小订单量)   对每个产品设定建议订单量是补货的方法之一.另外要注意订单的有效性,这是由供应商制定的 ...

  9. 7篇Model View和4篇双缓冲

    http://www.cnblogs.com/SkylineSoft/category/299475.html

  10. python总结

    环境:django,numpy,matplotlib, 解释语言:开发效率高,通用性强,内置方便的数据容器,易于扩展和嵌入. 语言:lua--嵌入式/网络/APP,erlang--嵌入式,python ...